Predicting core columns of
protein multiple sequence alignments
for improved parameter advising

Dan DeBlasio and John Kececioglu

Department of Computer Science
The University of Arizona, Tucson AZ 85721, USA
{deblasio,kece}@cs.arizona.edu

Abstract. In a computed protein multiple sequence alignment, the core-
ness of a column is the fraction of its substitutions that are in so-called
core columns of the gold-standard reference alignment of its proteins.
In benchmark suites of protein reference alignments, the core columns of
the reference are those that can be confidently labeled as correct, usually
due to all residues in the column being sufficiently close in the spatial
superposition of the folded three-dimensional structures of the proteins.
When computing a protein multiple sequence alignment in practice, a
reference alignment is not known, so its coreness can only be predicted.

We develop for the first time a predictor of column coreness for
protein multiple sequence alignments. This allows us to predict which
columns of a computed alignment are core, and hence better estimate
the alignment’s accuracy. Our approach to predicting coreness is simi-
lar to nearest-neighbor classification from machine learning, except we
transform nearest-neighbor distances into a coreness prediction via a re-
gression function, and we learn an appropriate distance function through
a new optimization formulation that solves a large-scale linear program-
ming problem. We apply our coreness predictor to parameter advising,
the task of choosing parameter values for an aligner’s scoring function
to obtain a more accurate alignment of a specific set of sequences. We
show that for this task, our predictor strongly outperforms other column-
confidence estimators from the literature, and affords a substantial boost
in alignment accuracy.

1 Introduction

The accuracy of a multiple sequence alignment computed on a benchmark set of
input sequences is usually measured with respect to a reference alignment that
represents the gold-standard alignment of the sequences. For protein sequences,
reference alignments are typically determined by structural superposition of the
known three-dimensional structures of the proteins in the benchmark. The ac-
curacy of a computed alignment is then defined to be the fraction of pairs of
residues aligned in the so-called core columns of the reference alignment that
are also present in columns of the computed alignment. Core columns represent

2 D. DeBlasio and J. Kececioglu

those in the reference that are deemed to be reliable, and can be objectively de-
fined as those columns containing a residue from every input sequence such that
the pairwise distances between these residues in the structural superposition of
the proteins are all within some threshold (typically a few angstroms). In short,
given a known reference alignment whose columns are labeled as either core or
non-core, we can determine the accuracy of any other computed alignment of
its proteins by evaluating the fraction of aligned residue pairs from these core
columns that are recovered. For a given column in a computed alignment, we
can also define the coreness value of the column to be the fraction of its aligned
residue pairs that are in core columns of the reference alignment. (Note that
column coreness is a fully objective quantity when core columns are identified
through superposition of protein structures, as in PALI [1] benchmarks.) A core-
ness value of 1 means the column of the computed alignment corresponds to a
core column of the reference alignment.

When aligning sequences in practice, obviously such a reference alignment
is not known, and the accuracy of a computed alignment, or the coreness of
its columns, can only be estimated. A good accuracy estimator for computed
alignments is extremely useful [7]. It can be leveraged to: pick among alternate
alignments of the same sequences the one of highest estimated accuracy, for
example, to choose good parameter values for an aligner’s scoring function as in
parameter advising [15]; or to select the best result from a collection of different
aligners, yielding a natural ensemble aligner that can be far more accurate than
any individual aligner in the collection [5].

Similarly, a good coreness predictor for columns in a computed alignment
can be used to: mask out unreliable regions of the alignment before computing
an evolutionary tree; or to improve an alignment accuracy estimator by concen-
trating its evaluation function on columns of higher predicted coreness, thereby
boosting the performance of parameter advising. In fact, in principle a perfect
coreness predictor would itself yield an ideal accuracy estimator.

In this paper, we develop for the first time a column coreness predictor for
protein multiple sequence alignments. Our approach to predicting coreness is
similar in some respects to nearest-neighbor classification from machine learning,
except we transform nearest-neighbor distance into a coreness prediction via a
regression function, and we learn an appropriate distance function through a new
optimization formulation that solves a large-scale linear programming problem.
We evaluate the performance of our new coreness predictor by applying it to the
task of parameter advising in multiple sequence alignment.

Related work To our knowledge, this is the first fully general attempt to di-
rectly predict the coreness of columns in computed protein alignments. Tools
are available that assess the quality of columns in an alignment, and can be
categorized into: (a) those that only identify columns as unreliable, for re-
moval from further analysis; and (b) those that compute a column quality
score, which can be thresholded. Tools that simply mask unreliable columns
include GBLOCKS [3], TrimAL [2], and ALISCORE [16]. Popular quality-score tools
are Noisy [8], ZORRO [21], TCS [4], and GUIDANCE [17].

Predicting core columns of protein multiple sequence alignments 3

Our experiments compare our coreness predictor to TCS and ZORRO: the
most recent tools that provide quality scores, as opposed to masking columns.
GUIDANCE requires four or more sequences, which excludes many benchmarks.
Noisy is dominated by an earlier version of GUIDANCE, which along with ALISCORE
and GBLOCKS are in turn dominated by ZORRO.

Plan of the paper Section 2 next describes how we learn our coreness predictor.
Section 3 then explains how we use predicted coreness to improve accuracy
estimation for protein alignments. Section 4 evaluates our approach to coreness
prediction by applying the improved accuracy estimator to alignment parameter
advising. Section 5 concludes.

2 Learning a coreness predictor

To describe how we learn a column coreness predictor, we first discuss our rep-
resentation of alignment columns, and our grouping of consecutive columns into
window classes. We then present our regression function for predicting coreness,
which transforms the nearest-neighbor distance from a window to a class into a
coreness value. Finally, we describe how we learn this window distance function
by solving a large-scale linear programming problem.

2.1 Representing alignment columns

The information used by our coreness predictor, beyond the multiple sequence
alignment itself, is an annotation of its protein sequences by predicted secondary
structure (which can be obtained in a preprocessing step by running the se-
quences through a standard protein secondary structure prediction tool such
as PSIPRED [12]). When inputting a column from such an annotated alignment
to our coreness predictor, we need a column representation that, while capturing
the association of amino acids and predicted secondary structure types, is also
independent of the number of sequences in the column. This is necessary as our
predictor will be trained on example alignments of particular sizes, yet the re-
sulting predictor must apply to alignments with arbitrary numbers of sequences.

Let X be the 20-letter amino acid alphabet, and I = {a, 8,7} be the sec-
ondary structure alphabet, corresponding respectively to types a-heliz, 5-strand,
and other (also called coil). We encode the association of an amino acid ¢ € X
with its predicted secondary structure type s € I" by an ordered pair (¢, s) that
we call a state, from the set Q = (X' x I') U {¢}. Here £ = (-, -) is the gap state,
where the dash symbol ‘- ¢ X is the alignment gap character.

We represent a multiple alignment column as a distribution over the set of
states), which we call its profile (mirroring standard terminology [9, p. 101]).
We denote the profile C for a given column by a function C(q) on states ¢ € @
satisfying C'(¢) > 0 and quQ C(q) = 1. Most secondary structure prediction
tools output a confidence value (not a true probability) that an amino acid in a
protein sequence has a given secondary structure type. For a column of amino

4 D. DeBlasio and J. Kececioglu

acids (cq - - - ¢) in a multiple alignment of k sequences, denote the confidence that
amino acid ¢; has structure type s € I" by p;(s) > 0, where > __ pi(s) = 1.
For non-gap state ¢ = (a, s) # §, profile C has value C(q) := >, . . _, pi(s) / k.
In other words, C(q) is the normalized total confidence across the column in
state g # £. For gap state ¢ = &, the profile value is C(§) := |{Z D= ‘-’}| /k,
the relative frequency of gap characters in the column.

2.2 Classes of column windows

In protein benchmarks, a column of a reference alignment is labeled core if
its residues are all sufficiently close in the superposition of the proteins’ three-
dimensional structures. The folded structure around a residue is a function of
nearby residues in the protein. Consequently, to predict the coreness of a column
in a computed alignment, we need contextual information from nearby columns.
We gather this context for a column by forming a window of consecutive columns
centered on it. Formally, a window W of width w > 1 is a sequence of 2w+1 con-
secutive column profiles C_,, --- C_1CyC4q - - - Cyy centered around profile Cy.

We define the following set of window classes C, depending on whether the
columns in a labeled training window are known to be core or non-core in the
reference alignment. We denote a column labeled core by C, and a column labeled
non-core by N. For window width w=1 (which has three consecutive columns),
such labeled windows correspond to strings of length 3 over alphabet {C,N}. The
three classes of core windows are CCC, CCN, NCC; the three classes of non-core
windows are CNN, NNC, NNN. (A window is considered core or non-core depending
on the label of its center column. We exclude windows NCN and CNC, as these
almost never occur in reference alignments.) Together these six classes comprise
set C. We call the five classes with at least one core column C in the window,
structured classes; the one class with no core columns is the unstructured class,
denoted by L = NNN.

2.3 The coreness regression function

We learn a coreness predictor by fitting a regression function that measures the
similarity between a column’s window and training examples of windows with
known coreness, and transforms this similarity into a coreness value.

The similarity of windows V =V_,,---V,, and W = W_,, - - - W,,, is expressed
in terms of the similarity of their corresponding column profiles V; and W;.
We measure the dissimilarity of two such profiles from window class ¢ at posi-
tion ¢, using class- and position-specific substitution scores o.;(p,q) on pairs of
states p, . (Section 2.4 describes how we learn these scores.) Given substitution
scores o, ;, the distance between windows V' and W from class ¢ € C—{L} is,

d(V,W) == Y > Vilp) Wila) 0eilp,q)-
—w<i<+w p,geEQ

These positional o.; allow distance function d. to score dissimilarity higher at
positions 7 near the center of the window, and lower towards its edges.

Predicting core columns of protein multiple sequence alignments 5

The regression function that predicts the coreness of a column first forms a
window W centered on the column, and then performs the following.

(1) (Find distance to closest class) Across all labeled training windows,
in all structured window classes, find the training window that has
smallest class-specific distance to W. Call this closest window V', its
class ¢, and their distance ¢ = d.(V, W).

(2) (Transform distance to coreness) If class c is a core class, return the
coreness value given by transform function feore(d). Otherwise, return
value fron(0).

To transform the nearest-neighbor distance ¢ from Step (1) into a coreness value
in Step (2), we use logistic functions for feore and fron. We fit these logistic curves
to empirically-measured average-coreness values at nearest-neighbor distances
collected for either core or non-core training examples, using the curve fitting
tools in SciPy [13]. As Figure 1 in Section 4.1 later shows, these logistic transform
functions fit actual coreness data remarkably well.

2.4 Learning the distance function by linear programming

We now describe the linear program used to learn the distance function on
column windows. The linear program learns a class-specific distance function d,.
for each window class ¢ € C.

To construct the linear program, we partition the training set T of labeled
windows by window class: subset T, C 7T contains all training windows of
class ¢ € C. We then form a smaller training sample S. C T, for each class ¢
by choosing a random subset of T, with a specified cardinality |S.|.

The constraints of the linear program fall in several categories. For a sample
training window W € S,, we identify other windows V' € T, from the same class c
in the full training set that are close to W (under a default distance d.). We call
these close windows V' from the same class ¢, targets. Similarly for W € S., we
identify other windows U € Tj, from a different class b # ¢ in the full training
set that are also close to W (under dp). We call these other close windows U
from a different class b, impostors. More formally, the neighborhood N.(W,1i)
for a structured class ¢ € C — { L} denotes the set of i-nearest-neighbors to W
(not including W) from training set T, under the class-specific default distance
function dL. (The default distance function that we use in our experiments is
described in Section 4.1.) The constraints of the linear program find distance
functions that for a sample window W € S., pull in targets V € N.(W,i) by
making d.(V,W) small, and push away impostors U € N,(W,17) for b # ¢ by
making d (U, W) large.

The target constraints for each sample window W € S, from each structured
class ¢ € C — {1}, and each target window V € N (W, k), are,

de(V,\W) — 7, (1)
0, (2)

evw

ARV

evw

6 D. DeBlasio and J. Kececioglu

where ey is a target error wvariable and 7 is a threshold variable. In the
above, quantity d.(V,W) is a linear expression in the substitution score vari-
ables o¢i(p, q), so constraint (1) is a linear inequality in the variables. Intuitively,
we would like condition d.(V, W) < 7 to hold (so W will be considered to be in
its correct class ¢); in the solution, variable ey will equal max{dc(V, W)—r, 0},
the amount of error by which this ideal condition is violated.

The impostor constraints for each sample window W € S, from each struc-
tured class ¢ € C — {L}, and each impostor window V € N,(W,¢) from each
structured class b € C — { L} with b # c, are,

T — dp(V,W) + 1, (3)
0, (4)

(AVARIYS

fw
fw

where fy is an impostor error variable. Intuitively, we would like condition
dp(V,W) > 7 to hold (so W will not be considered to be in the incorrect class b),
which we can express by dp(V, W) > 7 + 1 using a margin of 1. (Since the scale
of the distance functions is arbitrary, we can always pick a unit margin without
loss of generality.) In the solution to the linear program, variable fy will equal
maXbec,{J_}’Ver(W’e){T —dp(V, W) + 1, 0}, the largest amount of error by
which this condition is violated for W across all b and V.

We also have impostor constraints for each completely non-core window
W € T, and each core window V € N,(W,¢) from each structured core class b
(as we do not want W to be considered core), which are of the same form as
inequalities (3) and (4) above.

The triangle inequality constraints, for each structured class ¢ € C — {1},
each window position —w < i < w, and all states p,¢,r € @ (including the
gap state §), are: o.;(p,7) < 0ci(p,q) + 0ci(g, 7). A consequence of these
constraints is that the resulting distance functions d. also satisfy the triangle-
inequality property. (We omit the proof due to page limits.) This property allows
us to use faster metric-space data structures for computing the nearest-neighbor
distance § from Section 2.3.

The remaining constraints, for classes ¢, positions ¢, and states p and gq,
are: 0¢;(p,q) = 0¢,i(q,p), 0c,i(p,p) < 0c,i(p,q), 0ci(p,q) >0, 0c(£,€) =0, and
7 > 0, which ensure the distance functions are symmetric and non-negative.

Finally, the objective function minimizes the average error over all training
sample windows. Formally, we minimize,

o ooy Z EA Z % Z evw + (1-a) g Z A Z fw,

ceC—{L} WeS. VeNA(W,k) ceC WeSe

where 0 < o < 1 is a blend parameter controlling the weight on target error ver-
sus impostor error. We note that in an optimal solution to this linear program,
variables ey = max{dc(V, W)—r, 0} and fy = maxv,b{T —dp(V,W)+1, 0},
since inequalities (1)—(4) ensure the error variables are at least these values,
while minimizing the above objective function ensures they will not exceed them.
Thus solving the linear program finds distance functions d., given by substitution

Predicting core columns of protein multiple sequence alignments 7

scores 0. ;(p, ¢), that minimize the average over the training windows W € S, of
the amount of violation of our ideal conditions d.(V, W) < 7 for targets V € T,
and dp(V, W) > 7 for impostors V € Ty,

3 Applying coreness to accuracy estimation

The Facet alignment accuracy estimator [15] is a linear combination of efficiently-
computable feature functions that are positively correlated with true accuracy.
As mentioned earlier, the accuracy of a computed alignment is measured only
with respect to core columns of the reference alignment. We leverage our core-
ness predictor to improve the Facet estimator by: (1) creating a new feature
function that attempts to directly estimate accuracy, and (2) concentrating the
evaluation of existing feature functions on columns with high predicted coreness.

3.1 Creating a new coreness feature

Our new feature function on alignments, Predicted Alignment Coreness, is sim-
ilar to the so-called total-column score sometimes used to measure alignment
accuracy. Predicted Alignment Coreness counts the number of columns in the
alignment that are predicted to be core, by taking a window W around each
column, and determining whether its predicted coreness x(W) exceeds a thresh-
old k. This count of predicted core columns is normalized by an estimate of the
number of core columns in the unknown reference alignment of the sequences.
Formally, for computed alignment A of sequences S, the Predicted Alignment
Coreness feature function is Fyc(A) = [{WeA : x(W) > x}| / L(S).
Normalizer L(S) is designed to be positively correlated with the number
of core columns in the reference alignment for sequences S. We consider func-
tions L that are linear combinations of products of at most three factors from
the following: aggregate measures of the lengths of sequences in S (their mini-
mum, mean, and maximum length); ratios of the longest-common-subsequence
length for pairs of sequences, divided by an aggregate length measure (a form
of “percent identity”); and ratios of the difference in maximum and minimum
length, divided by an aggregate length measure (a form of “percent indel”). Fi-
nally, we obtain L(S) by solving a linear program to find coefficients of the linear
combination that minimizes the Li-norm with the true number of core columns.

3.2 Augmenting former features by coreness

We also augment some of the features currently in Facet to concentrate their
evaluation on columns of higher predicted coreness. A full description of all
feature functions in Facet is in [15]; we use predicted coreness to augment: Sec-
ondary Structure Blockiness, Secondary Structure Identity, Amino Acid Identity,
and Average Substitution Score. Each of these functions computes a feature value
that in essence is a sum over substitutions in a column; in the modified feature,
this is now a weighted sum over columns weighted by predicted coreness.

8 D. DeBlasio and J. Kececioglu

4 Assessing the coreness predictor

We evaluate our new approach to coreness prediction, and its use in accuracy
estimation for alignment parameter advising, through experiments on a collec-
tion of protein multiple sequence alignment benchmarks. A full description of
the benchmarks, and the universe of parameter choices for parameter advising, is
in [15]. Briefly, the benchmarks in our experiments consist of reference alignments
of protein sequences largely induced by structurally aligning their known three-
dimensional structures. We use the BENCH suite of Edgar [10], supplemented by
a selection from the PALI suite of Balaji et al. [1]. Our full benchmark collection
consists of 861 reference alignments.

We use twelve-fold cross-validation to assess both column classification with
our coreness predictor, and parameter advising with our augmented accuracy es-
timator. To correct for the overabundance of easy-to-align benchmarks when as-
sessing parameter advising, we bin the benchmarks according to difficulty, mea-
sured by the true accuracy of their alignment computed by the Opal aligner [19,
20] under its default parameter setting. We ensure folds are balanced in their
representation of benchmarks from all difficulty bins. For each fold, we generate
a training set and testing set of example alignments by running Opal on each
benchmark for each parameter choice from a fixed universe of settings.

4.1 Constructing the coreness predictor

We first discuss learning distance functions and fitting transform functions.

Learning the distance function To keep the linear program manageable, each
training fold and each structured class has a touchstone that is a sample of 4,000
window examples. When learning the distance functions and testing the accuracy
of our coreness predictor, we use training and testing samples of 2,000 window
examples representing all classes (including the unstructured class), drawn from
our training and testing example alignments.

We form the initial sets of targets and imposters for the linear program by
either: (1) using a default distance function whose positional substitution score is
a convex combination of (a) the VTML200 substitution score on the states’ amino
acids (transformed to a dissimilarity value in the range [0, 1]) and (b) the identity
of the states’ secondary structure types, with positions weighted so the center
column has twice the weight of its flanking columns; or (2) randomly sampling
example windows from the appropriate classes to form targets and impostors.

When learning the distance function we use 2 targets and 150 impostors per
class for each window in the training sample. Once a distance function is learned,
we iterate the process by using the learned distance function to recompute the
sets of targets and impostors for another instance of the linear program that
is in turn solved to learn a new distance function. For the receiver operating
characteristic (ROC) curve, we give the area under the curve (AUC) measure
on both training and testing data, for successive iterations of distance learning,

Predicting core columns of protein multiple sequence alignments 9

(434)

100% . 100%
! [— Core examples - Facet/lrue. 7
7] — Noncore examples 90% 1 EE Facet/predicted a7y 90%
@ |— Fitted logistic B Facet/none 74/
Qosl f 4 >.80% | Default fre 80% 3,
core 3 | B Default |
2 © 70% 62)) 0% &
Q 5 (50)/ s
Q 60 —y (861) | 609 =+
O o6} E g 60% (26) ¢ 1800 E
126)/
@ < r (5
S o 50% ! 50% 3
= 5 30 z
o4l - = 0% i a0% O
c
) 2 12) (20) ¢ g
g 'c>s 30% 1 (12) S 30%
© - 12) 3
Go2f f g 20% 20%
> non
< 10% 10%
0 1 1 1 1 0% 0%
1 1.5 2 25 3 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Average
Nearest Neighbor Distance x10° Benchmark Bin

Fig. 1. Fit of the logistic trans- Fig.2. Average parameter advising accuracy
form functions to the average true within difficulty bins for greedy advisor sets of car-
coreness of training examples. dinality 7.

starting from the default distance function. Across the first 5 iterations, the suc-
cessive training AUC is 86.3,93.9,98.9,99.3,99.3; the corresponding testing AUC
is 83.8,82.5,84.9,84.8,85.0. Note that the training AUC increases steadily for
the first four iterations, though this translates into only a slight improvement
in testing AUC; after this fifth iteration, no further improvement is seen. While
iterating distance learning markedly improves our core column predictor on the
training examples, it is overfitting and does not generalize well to testing exam-
ples, most likely due to the smaller training sample and touchstone we used to
reduce the time for solving the linear program. We also found that using ran-
dom examples for the targets and imposters led to much better generalization,
namely a training and testing AUC of 85.8 and 88.7, so we use these distances
(without iterating) when evaluating results on parameter advising.

Transforming distance to coreness Figure 1 shows the fitted logistic func-
tions feore and fhon used to transform nearest-neighbor distance to predicted
coreness, superimposed on the underlying true coreness data for one fold of
training examples. The horizontal axis is nearest-neighbor distance ¢, while the
vertical axis is the average true coreness of training examples at that distance.
The blue and red curves respectively show the average true coreness of training
examples for which the nearest neighbor is in either a core class or a structured
non-core class. The top and bottom green curves respectively show the logistic
transform functions for the core and non-core classes fitted to this training data.
Note that the green logistic curves fit the data quite well.

4.2 Improving parameter advising

A parameter advisor and has two components: (1) an accuracy estimator, which
estimates the accuracy of a computed alignment, and (2) an advisor set, which
is a set of candidate assignments of values to the aligner’s parameters. The ad-
visor picks the choice of parameter values from the advisor set for which the
aligner yields the alignment of highest estimated accuracy. In our experiments,

10 D. DeBlasio and J. Kececioglu

we evaluate the true accuracy of the Opal aligner [19,20] combined with a pa-
rameter advisor using Facet (the best accuracy estimator for advising from the
literature [15]), augmented by our new coreness predictor as well as by TCS and
ZORRO. We compare these parameter advising results to previous results using
unmodified Facet as well TCS (the next-best accuracy estimator for advising).
We also compare against augmenting Facet by true coreness, which provides a
limit for an unattainable perfect coreness predictor.

The choice of advisor set is crucial for parameter advising, as the perfor-
mance of an advisor is limited by the quality of the alignments generated by this
set of parameter choices. We consider two types of advisor sets [6]: estimator-
independent oracle sets, which are optimal for a conceptual oracle advisor that
uses true accuracy as its estimator; and estimator-aware greedy sets, which tend
to perform better than oracle sets in practice, but are tuned to a specific accuracy
estimator. Finding such advisor sets requires specifying a universe of possible pa-
rameter choices; we use the universe of 243 parameter choices from [6].

As mentioned earlier, we bin alignments according to difficulty to correct
for the overabundance of easy-to-align benchmarks. Figure 2 lists in parentheses
above the bars the number of benchmarks in each bin. When reporting advising
accuracy, we give the true accuracy of the alignments chosen by advisor, uni-
formly averaged over bins (rather than uniformly averaging over benchmarks).
With this equal weighting of bins, an advisor that uses only the single optimal de-
fault parameter choice will achieve an average advising accuracy of roughly 50%
(illustrated in Figure 3). This establishes, as a point of reference, advising accu-
racy 50% as the baseline against which to compare advising performance.

The augmented Facet estimator We use our coreness predictor to mod-
ify the Facet accuracy estimator by including the new Predicted Alignment
Coreness feature of Section 3.1, and augmenting existing feature functions by
coreness as in Section 3.2. We learned coefficients for these feature functions
using the difference-fitting technique described in [15]. The new alignment accu-
racy estimator that uses our coreness predictor has non-zero coefficients for: the
new feature, Predicted Alignment Coreness F)¢; two features augmented by pre-
dicted coreness, Amino Acid Identity Fy;, and Secondary Structure Identity Fgr;
and four original unaugmented features, Gap Open Density Fgy, Secondary
Structure Agreement Fgy, Amino Acid Identity Fj1, and Secondary Structure
Blockiness Fgr. The resulting augmented accuracy estimator is: (0.512) Fgo +
(0.304) F¢; + (0.157) Fsy + (0.109) Fy1 + (0.096) Fgr + (0.025) Fj; + (0.013) Fyc.

Improvement in advising accuracy We assess the parameter advising per-
formance of our augmented Facet estimator (“Facet/predicted”) by comparing
it to unaugmented Facet (“Facet/none”), as well as Facet augmented by TCS
(“Facet/TCS”), ZORRO (“Facet/ZORR0”), and true coreness (“Facet/true”). We
also compare against TCS, the next-best estimator from the literature.
Parameter advising performance using oracle and greedy advisor sets is shown
in Figures 3 and 4. In both figures, the horizontal axis is advisor set cardinal-
ity, while the vertical axis is advising accuracy for testing folds, averaged across

Predicting core columns of protein multiple sequence alignments 11

60% 60%
>
g'58% :.?53%
§ 56% 5 56%

[%

g 5% o s =t &54%
D52y | T 252%
£ . == TFace] == Facetitrue
2 50% U/&(/ MAFFT [oo redicted 2 509, {© MAFFT (25 cocet/predicted
3 Muscle |=0= Facet/none % Muscle ::gace:;r;one
< 48% Clustal Omega _t ::Z::Z:;“ < 48% Clustal Omega | 77 Tecet/ios

46% £ 46% =

12345678 91011121314151617181920 12345678 91011121314151617181920
Advisor Set Cardinality Advisor Set Cardinality

Fig. 3. Advising accuracy on oracle sets Fig.4. Advising accuracy on greedy sets
with modified Facet or TCS estimators. with modified Facet or TCS estimators.

bins. The curves show performance with the Opal aligner [19,20]. For refer-
ence, the default alignment accuracy for three other popular aligners, MAFFT [14],
MUSCLE [11], and Clustal Omega [18], is also shown with dashed horizontal lines.

Figure 3 shows that on oracle advisor sets, Facet/predicted compared to
Facet/none boosts the average accuracy of parameter advising by nearly 3%.
This increase is in addition to the improvement of Facet over TCS.

Figure 4 shows that on greedy advisor sets, Facet /predicted at cardinality 7
boosts advising accuracy by 2%. (Note the curves are higher for greedy sets
than oracle sets.) The accuracy for Facet/predicted is about halfway between
Facet/none and Facet/true (the perfect predictor). Interestingly, Facet/TCS
and Facet/ZORRO actually have worse accuracy than Facet/none.

Advising accuracy within difficulty bins for greedy sets of cardinality 7 is
shown earlier in Figure 2. In this bar chart, for the bin at each difficulty on the
horizontal axis, advising accuracy averaged over just the benchmarks in the bin is
shown on the vertical axis. The final chart on the right gives accuracy averaged
across all bins. Note that on the most difficult benchmarks, Facet/predicted
boosts accuracy over Facet/none by more than 5%.

For reference, advising accuracy uniformly-averaged over benchmarks (rather
than bins), on greedy sets of cardinality 10, is: for Facet/none, 81.9%; and for
Facet/predicted, 82.1%. On these same benchmarks, the corresponding average
accuracy of other popular aligners, using their default parameter settings, is:
Clustal Omega, 77.3%; MUSCLE, 78.1%; MAFFT, 79.4%; and Opal, 80.5%.

5 Conclusion

We have developed a column coreness predictor for protein multiple sequence
alignments that uses a regression function on nearest neighbor distances for class
distance functions learned by solving a new linear programming formulation.
When applied to alignment accuracy estimation and parameter advising, the
coreness predictor strongly outperforms other column confidence estimators from
the literature, and provides a substantial boost in advising accuracy.

Acknowledgement This research was supported by NSF grant I1S-1217886.

12 D. DeBlasio and J. Kececioglu
References
1. Balaji, S., Sujatha, S., Kumar, S., Srinivasan, N.: PALI—a database of Phylogeny

2.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

and ALIgnment of homologous protein structures. NAR 29(1), 61-65 (2001)
Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldén, T.: trimAl: a tool for au-
tomated alignment trimming in large-scale phylogenetic analyses. Bioinformatics
25(15), 1972-1973 (Aug 2009)

Castresana, J.: Selection of conserved blocks from multiple alignments for their use
in phylogenetic analysis. Molecular Biol. and Evolution 17(4), 540-552 (May 2000)
Chang, J.M., Tommaso, P.D., Notredame, C.: TCS: A new multiple sequence align-
ment reliability measure to estimate alignment accuracy and improve phylogenetic
tree reconstruction. Molecular Biology and Evolution 31, 1625-1637 (2014)
DeBlasio, D., Kececioglu, J.: Ensemble multiple sequence alignment via advising.
Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biol-
ogy, and Health Informatics (BCB) pp. 452-461 (2015)

DeBlasio, D.F., Kececioglu, J.D.: Learning parameter sets for alignment advis-
ing. Proceedings of the 5th ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics (BCB) pp. 230-239 (2014)

DeBlasio, D.F., Wheeler, T.J., Kececioglu, J.D.: Estimating the accuracy of mul-
tiple alignments and its use in parameter advising. Proc. of the 16th Conference
on Research in Computational Molecular Biology (RECOMB) pp. 45-59 (2012)
Dress, A.W., Flamm, C., Fritzsch, G., Grinewald, S., Kruspe, M., Prohaska, S.J.,
Stadler, P.F.: Noisy: Identification of problematic columns in multiple sequence
alignments. Algorithms for Molecular Biology 3(7) (2008)

Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probablistic Models of Proteins and Nucleic Acids. Cambridge Univ. Press (1998)
Edgar, R.C.: BENCH. drive5. com/bench (Jan 2009)

Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time
and space complexity. BMC Bioinformatics 5(113), 1-19 (2004)

Jones, D.T.: Protein secondary structure prediction based on position-specific scor-
ing matrices. Journal of Molecular Biology 292(2), 195-202 (Sep 1999)

Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for
Python. http://www.scipy.org (2001), http://www.scipy.org/

Katoh, K., Kuma, K.i., Toh, H., Miyata, T.: MAFFT ver. 5: improvement in accuracy
of multiple sequence alignment. Nuc. Acids Res. 33(2), 511-518 (Jan 2005)
Kececioglu, J., DeBlasio, D.: Accuracy estimation and parameter advising for pro-
tein multiple sequence alignment. Jour. of Comput. Bio. 20(4), 259-279 (Apr 2013)
Kiick, P., Meusemann, K., Dambach, J., et al.: Parametric and non-parametric
masking of randomness in sequence alignments can be improved and leads to better
resolved trees. Frontiers in Zoology 7(10), 1-10 (2010)

Sela, I., Ashkenazy, H., Katoh, K., Pupko, T.: GUIDANCE2: accurate detection of
unreliable alignment regions accounting for the uncertainty of multiple parameters.
Nucleic Acids Research 43(W1), W7-W14 (2015)

Sievers, F., et al.: Fast, scalable generation of high-quality protein multiple se-
quence alignments using Clustal Omega. Molec. Sys. Bio. 7(1), 539-539 (Jan 2011)
Wheeler, T.J., Kececioglu, J.D.: Multiple alignment by aligning alignments. Bioin-
formatics 23(13), 1559-1568 (Jul 2007), proceedings of ISMB 2007

Wheeler, T.J., Kececioglu, J.D.: Opal: software for sum-of-pairs multiple sequence
alignment. opal.cs.arizona.edu (Jan 2012)

Wu, M., Chatterji, S., Eisen, J.A.: Accounting for alignment uncertainty in phy-
logenomics. PLoS ONE 7(1), 30288 (2012)

