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Abstract

In a computed protein multiple sequence alignment, the coreness of a column is
the fraction of its substitutions that are in so-called core columns of the
gold-standard reference alignment of its proteins. In benchmark suites of protein
reference alignments, the core columns of the reference alignment are those that
can be confidently labeled as correct, usually due to all residues in the column
being sufficiently close in the spatial superposition of the known
three-dimensional structures of the proteins. Typically the accuracy of a protein
multiple sequence alignment that has been computed for a benchmark is only
measured with respect to the core columns of the reference alignment. When
computing an alignment in practice, however, a reference alignment is not
known, so the coreness of its columns can only be predicted.

We develop for the first time a predictor of column coreness for protein multiple
sequence alignments. This allows us to predict which columns of a computed
alignment are core, and hence better estimate the alignment’s accuracy. Our
approach to predicting coreness is similar to nearest-neighbor classification from
machine learning, except we transform nearest-neighbor distances into a coreness
prediction via a regression function, and we learn an appropriate distance
function through a new optimization formulation that solves a large-scale linear
programming problem. We apply our coreness predictor to parameter advising,
the task of choosing parameter values for an aligner’s scoring function to obtain a
more accurate alignment of a specific set of sequences. We show that for this
task, our predictor strongly outperforms other column-confidence estimators from
the literature, and affords a substantial boost in alignment accuracy.

Keywords: multiple sequence alignment; core blocks; alignment accuracy;
accuracy estimation; parameter advising; machine learning; regression

1 Introduction
The accuracy of a multiple sequence alignment computed on a benchmark set of

input sequences is usually measured with respect to a reference alignment that

represents the gold-standard alignment of the sequences. For protein sequences,

reference alignments are often determined by structural superposition of the known

three-dimensional structures of the proteins in the benchmark. The accuracy of a

computed alignment is then defined to be the fraction of pairs of residues aligned in

the so-called core columns of the reference alignment that are also present in columns

of the computed alignment. Core columns represent those in the reference that are

deemed to be reliable, which can be objectively defined as those columns containing

a residue from every input sequence such that the pairwise distances between these

residues in the structural superposition of the proteins are all within some threshold
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(typically a few angstroms). In short, given a known reference alignment whose

columns are labeled as either core or non-core, we can determine the accuracy of

any other computed alignment of its proteins by evaluating the fraction of aligned

residue pairs from these core columns that are recovered.

For a column in a computed alignment, we can also define the coreness value for

the column to be the fraction of its aligned residue pairs that are in core columns of

the reference alignment. (Note this definition of column coreness is fully objective

when core columns are identified through automated superposition of known protein

structures, as done for example in the PALI [1] benchmark suite.) A coreness value

of 1 means the column of the computed alignment corresponds to a core column of

the reference alignment.

When aligning sequences in practice, obviously such a reference alignment is not

known, and the accuracy of a computed alignment, or the coreness of its columns,

can only be estimated. A good accuracy estimator for computed alignments is ex-

tremely useful [2]. It can be leveraged to

• pick among alternate alignments of the same sequences the one of highest esti-

mated accuracy, for example, to choose good parameter values for an aligner’s

scoring function as in parameter advising [3, 4]; or

• select the best result from an ensemble of different aligners, naturally yield-

ing a new ensemble aligner, which can be far more accurate than any of its

individual aligners [5].

Similarly, a good coreness predictor for columns in a computed alignment can be

used to

• mask out unreliable regions of the alignment before computing an evolution-

ary tree, to boost the quality of phylogeny reconstruction; or

• improve an alignment accuracy estimator by concentrating its evaluation func-

tion on columns of higher predicted coreness, thereby boosting the perfor-

mance of parameter advising.

In fact, a perfect coreness predictor by itself would in principle yield an ideal accu-

racy estimator.

In this paper, we develop for the first time a column coreness predictor for pro-

tein multiple sequence alignments. Our approach to predicting coreness is similar

in some respects to nearest-neighbor classification from machine learning, except

we transform nearest-neighbor distance into a coreness prediction via a regression

function, and we learn an appropriate distance function through a new optimization

formulation that solves a large-scale linear programming problem. We leverage our

new coreness predictor to yield an improved alignment accuracy estimator, and eval-

uate its performance by applying the improved estimator to the task of parameter

advising in multiple sequence alignment.

Related work

To our knowledge, this is the first fully general attempt to directly predict the

coreness of columns in computed protein alignments. Tools are available that assess

the quality of columns in a multiple alignment, and can be categorized into: (a) those
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that only identify columns as unreliable, for removal from further analysis; and

(b) those that compute a column quality score, which can be thresholded. Tools that

simply mask unreliable columns of an alignment include GBLOCKS [6], TrimAL [7],

and ALISCORE [8]. Popular quality-score tools are Noisy [9], ZORRO [10], TCS [11],

and GUIDANCE [12].

Our experiments compare our coreness predictor to TCS and ZORRO: the most

recent tools that provide quality scores, as opposed to masking columns. GUIDANCE

requires four or more sequences, which excludes many benchmarks. Among the

above quality-score tools, Noisy has been shown to be dominated by GUIDANCE,

which is in turn dominated by ZORRO.

Plan of the paper

Section 2 next describes how we learn our coreness predictor. Section 3 then ex-

plains how we use predicted coreness to improve accuracy estimation for protein

alignments. Section 4 evaluates our approach to coreness prediction by applying the

improved accuracy estimator to alignment parameter advising. Finally Section 5

concludes, and gives directions for further research.

2 Learning a coreness predictor
To describe how we learn a column coreness predictor, we first discuss our represen-

tation of alignment columns, and our grouping of consecutive columns into window

classes. We then present our regression function for predicting coreness, which trans-

forms the nearest-neighbor distance from a window to a class into a coreness value.

Following this we explain how to learn the window distance function by solving a

large-scale linear programming problem. Finally we show that the resulting window

distances satisfy the triangle inequality, which enables the use of data structures for

metric-space nearest-neighbor search when evaluating the regression function.

2.1 Representing alignment columns

The information used by our coreness predictor, beyond the multiple sequence

alignment itself, is an annotation of its protein sequences by predicted secondary

structure (which can be obtained in a preprocessing step by running the se-

quences through a standard protein secondary structure prediction tool such

as PSIPRED [13]). When inputting a column from such an annotated alignment to

our coreness predictor, we need a column representation that, while capturing the

association of amino acids and predicted secondary structure types, is also indepen-

dent of the number of sequences in the column. This is necessary as our predictor

will be trained on example alignments of particular sizes, yet the resulting predictor

must apply to alignments with arbitrary numbers of sequences.

Let Σ be the 20-letter amino acid alphabet, and Γ = {α, β, γ} be the secondary

structure alphabet, corresponding respectively to types α-helix, β-strand, and other

(also called coil). We encode the association of an amino acid c ∈ Σ with its pre-

dicted secondary structure type s ∈ Γ by an ordered pair (c, s) that we call a state,

from the set Q = (Σ × Γ) ∪ {ξ}. Here ξ = (-, -) is the gap state, where the dash

symbol ‘-’ 6∈ Σ is the alignment gap character.

We represent a multiple alignment column as a distribution over the set of

states Q, which we call its profile (mirroring standard terminology [14, p. 101]).
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We denote the profile C for a given column by a function C(q) on states q ∈ Q
satisfying C(q) ≥ 0 and

∑
q∈Q C(q) = 1. Most secondary structure prediction tools

output a confidence value (not a true probability) that an amino acid in a protein se-

quence has a given secondary structure type. For a column of amino acids (c1 · · · ck)

in a multiple alignment of k sequences, denote the confidence that amino acid ci has

secondary structure type s ∈ Γ by pi(s) ≥ 0, where
∑
s∈Γ pi(s) = 1. For non-gap

state q = (a, s) 6= ξ, profile C has value

C(q) :=
1

k

∑
1≤i≤k : ci=a

pi(s) .

In other words, C(q) is the normalized total confidence across the column in

state q 6= ξ. For gap state q = ξ, the profile value is

C(ξ) :=
1

k

∣∣∣{i : ci = ‘-’
}∣∣∣ ,

the relative frequency of gap characters in the column.

2.2 Classes of column windows

In protein benchmarks, a column of a reference alignment is labeled core if the

residues in that column are all sufficiently close in the structural superposition of

the known three-dimensional structures of the proteins. The folded structure around

a residue is not simply a function of the amino acid of the residue itself, or its

secondary structure type, but is also a function of nearby residues in the protein.

Consequently, to predict the coreness of a column in a computed alignment, we

need contextual information from nearby columns of the alignment. We gather this

additional context around a column by forming a window of consecutive columns

centered on the given column. Formally, a window W of width w ≥ 1 is a sequence

of 2w+1 consecutive column profiles C−w · · ·C−1C0C+1 · · ·C+w centered around

profile C0.

We define the following set of window classes C, depending on whether the columns

in a labeled training window are known to be core or non-core in the reference align-

ment. (When later extracting training windows from a computed alignment that

has a known reference alignment, we will label a column in a computed alignment

as core iff its true coreness value—namely, the fraction of its residue pairs that are

in core columns of the reference alignment—is above a fixed threshold.) We de-

note a column labeled core by C, and a column labeled non-core by N. For window

width w = 1 (which has three consecutive columns), such labeled windows corre-

spond to strings of length 3 over alphabet {C, N}. The three classes of core windows

are CCC, CCN, NCC; the three classes of non-core windows are CNN, NNC, NNN. (A win-

dow is considered core or non-core depending on the label of its center column. We

exclude windows NCN and CNC, as these almost never occur in reference alignments.)

Together these six classes comprise set C. We call the five classes with at least one

core column C in the window, structured classes; the one class with no core columns

is the unstructured class, denoted by ⊥ = NNN.
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2.3 The coreness regression function

We learn a coreness predictor by fitting a regression function that first measures

the similarity between a column’s window and training examples of windows with

known coreness, and then transforms this similarity into a coreness value.

The similarity of windows V = V−w · · ·Vw and W = W−w · · ·Ww is expressed in

terms of the similarity of their corresponding column profiles Vi and Wi. We measure

the dissimilarity of two such profiles from window class c at position i, using class-

and position-specific substitution scores σc,i(p, q) on pairs of states p, q. (Section 2.4

describes how we learn these scores.) Given substitution scores σc,i, the distance

between windows V and W from structured class c ∈ C−{⊥} is

dc(V,W ) :=
∑

−w≤ i≤+w

∑
p,q∈Q

Vi(p) Wi(q) σc,i(p, q) .

These positional σc,i allow distance function dc to score dissimilarity higher at

positions i near the center of the window, and lower towards its edges. These class-

specific σc,i also allow distance functions to score dissimilarity differently for core

and non-core classes.

The regression function that predicts the coreness of a column first forms a win-

dow W centered on the column, and then performs the following.

(1) (Find distance to closest class) Across all labeled training windows, in all

structured window classes, find the training window that has smallest class-

specific distance to W . Call this closest window V , its class c, and their

distance δ = dc(V,W ).

(2) (Transform distance to coreness) If class c is a core class, return the

coreness value given by transform function fcore(δ). Otherwise, return

value fnon(δ).

Note this uses two different transform functions to map distance to coreness: func-

tion fcore for core classes, and fnon for non-core.

We next explain how we efficiently find distance δ, and then describe the transform

functions f .

2.3.1 Finding the distance to a class

To find the distance of a window W to a class c, we need to find the near-

est neighbor of W among the set of training windows Tc in class c, namely

argminV ∈Tc

{
dc(V,W )

}
. Finding the nearest neighbor through exhaustive search

by explicitly evaluating dc(V,W ) for every window V can be expensive when Tc is

large (and cannot be avoided in the absence of exploitable properties of function dc).

When the distance function is a metric, for which the key property is the triangle

inequality (namely that d(x, z) ≤ d(x, y) + d(y, z) for any three objects x, y, z),

faster nearest neighbor search is possible. In this situation, in a preprocessing step

we can first build a data structure over the set Tc, which then allows us to perform

faster nearest neighbor searches on Tc for any query window W . One of the best data

structures for nearest neighbor search under a metric is the cover tree of Beygelz-

imer, Kakade and Langford [15]. Theoretically, cover trees permit nearest neighbor



DeBlasio and Kececioglu Page 6 of 22

searches over a set of n objects in O(log n) time, after constructing a cover tree in

O(n log n) time, assuming that the intrinsic dimension of the set under metric d

has a so-called bounded expansion constant [15]. (For actual data, the expansion

constant can be exponential in the intrinsic dimension.) In our experiments, for

nearest neighbor search we use the recently-developed dispersion tree data struc-

ture of Woerner and Kececioglu [16], which in extensive testing on scientific data is

significantly faster in practice than cover trees.

We build a separate dispersion tree for each structured window class c ∈ C−{⊥}
over its training set Tc, using its distance function dc, in a preprocessing step. To

find the nearest neighbor to window W over all training windows T =
⋃
c Tc, we

then perform a nearest neighbor search with W on the dispersion tree for each

structured class c, and merge these |C|−1 search results by picking the one with

smallest distance to W .

2.3.2 Transforming distance to coreness

To transform the nearest-neighbor distance δ from Step (1) of the regression proce-

dure into a coreness value in Step (2), we use logistic functions for fcore and fnon.

We fit these logistic functions to empirically-measured average-coreness values at

nearest-neighbor distances collected for either core or non-core training examples,

using the curve-fitting tools in SciPy [17]. The form of the logistic function we use

is

f(x) := κ + (λ−κ)
1

1 + e−α(x− β)
,

where parameters κ and λ are respectively the minimum and maximum average-

coreness values measured on the examples, while parameters α and β respectively

control the slope and location of the logistic function’s inflection point. For func-

tion fcore, parameter α is positive (so coreness decreases with distance to a core

class); for fnon, parameter α is negative (so coreness increases with distance from

a non-core class). As Figure 1 in Section 4.1.2 later shows, these logistic transform

functions fit actual coreness data remarkably well.

For the fitting process, we first learn the distance functions dc as described in Sec-

tion 2.4, and then fit the transform functions to empirical coreness values measured

at the distances observed for example windows from our set of training windows.

To fit function fcore, we

(a) take the examples whose nearest neighbor is from one of the three core

classes,

(b) sort these examples by their observed nearest-neighbor distance,

(c) at each observed distance δ, collect all k ≥ 1 examples whose distance

equals δ, the ` successive examples whose distance is below δ, and the ` suc-

cessive examples above δ, where count ` is fixed for the fitting process, and

(d) compute the average true-coreness value of these k + 2` examples, and as-

sociate this average value with distance δ.

A logistic curve is then fit to these pairs of average true-coreness and observed

nearest-neighbor distances. To fit function fnon, this same process is repeated sep-

arately for examples whose nearest neighbor is from one of the two structured

non-core classes.



DeBlasio and Kececioglu Page 7 of 22

To predict coreness for a window from a computed alignment, again we (1) find its

nearest-neighbor distance δ among all training windows from structured classes, and

(2) transform this distance to coreness by returning fcore(δ) if the nearest neighbor

is from a core class and fnon(δ) otherwise.

2.4 Learning the distance function by linear programming

We now describe the linear program used to learn the distance functions on col-

umn windows. Again we divide the window classes C into two categories: the struc-

tured classes, containing windows centered on core columns, or centered on non-core

columns that are flanked on at least one side by core columns; and the unstructured

class, containing windows of only non-core columns. We again denote this unstruc-

tured class of completely non-core windows by ⊥ ∈ C. The linear program learns a

class-specific distance function dc for each structured window class c ∈ C−{⊥}.
In principle, the linear program tries to find distance functions dc that make

the following “conceptual” nearest-neighbor classifier accurate. (We do not actually

learn such a classifier, but instead ultimately learn a regressor.) This classifier forms

a window W centered on the column to be classified, and finds the nearest neighbor

to W over all structured classes C−{⊥} in the training set, using their correspond-

ing distance functions dc. Let the distance to this nearest neighbor be δ, and its

structured class be c. The conceptual classifier would then compare distance δ to a

threshold τ .

• If δ ≤ τ , the central column of window W is declared to be “core” or “non-

core” depending on whether structured class c is respectively core or non-core.

• Otherwise, window W is deemed to be in the unstructured non-core class ⊥,

and its central column is declared “non-core.”

The key aspect of this conceptual nearest-neighbor classifier is that it can recognize a

completely non-core window W from class ⊥, without actually having any examples

in its training set that are close to W . This is crucial, as the set of possible windows

from the unstructured class ⊥ is enormous and may lack any recognizable structure,

which would make reliably identifying windows from class ⊥ by having a near

neighbor in the training set hopeless. On the other hand, identifying windows from

the structured classes is possible by having enough examples in the training set. The

following linear program learns both distance functions dc and distance threshold τ .

To construct the linear program, we partition the training set T of labeled win-

dows by window class: subset Tc ⊆ T contains all training windows of class c ∈ C.
We then form a smaller training sample Sc ⊆ Tc for each class c by choosing a

random subset of Tc with a specified cardinality |Sc|.
For a sample training window W ∈ Sc, we identify other windows V ∈ Tc from the

same class c in the full training set that are close to W (under a default distance d̃c).

We call these close windows V from the same class c, targets. Similarly for W ∈ Sc,
we identify other windows U ∈ Tb from a different class b 6= c in the full training

set that are also close to W (under d̃b). We call these other close windows U from a

different class b, impostors (paralleling the terminology of Weinberger and Saul [18]).

We call these sets of windows that are close to a given window W the neighbor-

hood Nc(W, i) of W for a structured class c ∈ C−{⊥}, which denotes the set of
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i-nearest-neighbors to W (not including W ) from training set Tc under the class-

specific default distance function d̃c. (The default distance function that we use in

our experiments is described in Section 4.1.1.)

At a high level, the linear program finds a distance function that, for sample

windows W ∈ Sc,

• pulls in targets V ∈ Nc(W, i), by making dc(V,W ) small, and

• pushes away impostors U ∈ Nb(W, i) for b 6= c, by making db(U,W ) large.

The neighborhoods N (W, i) that give these sets of targets and impostors are defined

with respect to default distance functions d̃. Ideally these neighborhoods should

be defined with respect to the learned distance functions dc, but obviously these

learned distances are not available until after the linear program is solved. We ad-

dress this discrepancy by iteratively solving a series of linear programs. The first

linear program at iteration 1 defines neighborhoods with respect to distance func-

tions d(0) = d̃, and its solution yields the new functions d(1). In general, iteration i

uses the previous iteration’s functions d(i−1) to formulate a linear program whose

solution yields the new distance functions d(i). This process is repeated for a fixed

number of iterations, or until the change in the distance functions is sufficiently

small.

The target constraints of the linear program, for each sample window W ∈ Sc

from each structured class c ∈ C−{⊥}, and each target window V ∈ Nc(W,k), are

eVW ≥ dc(V,W ) − τ , (1)

eVW ≥ 0 , (2)

where eVW is a target error variable and τ is a threshold variable. In the above,

quantity dc(V,W ) is a linear expression in the substitution score variables σc,i(p, q),

so constraint (1) is a linear inequality in all these variables. Intuitively, we would like

condition dc(V,W ) ≤ τ to hold (so W will be considered to be in its correct class c);

in the solution to the linear program, variable eVW will equal max
{
dc(V,W )−τ, 0

}
,

the amount of error by which this ideal condition is violated.

In the target neighborhoodNc(W,k) above, count k specifies the number of targets

for each sample window W . In our experiments we use a small number of targets,

with k = 2 or 3.

The impostor constraints for each sample window W ∈ Sc from each structured

class c ∈ C−{⊥}, and each impostor window V ∈ Nb(W, `) from each structured

class b ∈ C−{⊥} with b 6= c, are

fW ≥ τ − db(V,W ) + 1 , (3)

fW ≥ 0 , (4)

where fW is an impostor error variable. Intuitively, we would like condition

db(V,W ) > τ to hold (so W will not be considered to be in the incorrect class b),

which we can express by db(V,W ) ≥ τ + 1 using a margin of 1. (Since the scale

of the distance functions is arbitrary, we can always pick a unit margin without

loss of generality.) In the solution to the linear program, variable fW will equal
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maxb∈C−{⊥}, V ∈Nb(W,`)

{
τ − db(V,W ) + 1, 0

}
, the largest amount of error by which

this condition is violated for W across all b and V .

We also have impostor constraints for each completely non-core window W ∈ T⊥,

and each core window V ∈ Nb(W, `) from each structured core class b (as we do

not want W to be considered core), which are of the same form as inequalities (3)

and (4) above.

In the impostor neighborhood Nb(W, `) above, count ` specifies the number of

impostors for each sample windowW . We use a large number of impostors ` ≈ 100 in

our experiments. Having a single impostor error variable fW per sample window W

(versus a target error variable eVW for every W and target V ) allows us to use

a large count ` while still keeping the number of variables in the linear program

tractable.

The triangle inequality constraints, for each structured class c ∈ C−{⊥}, each

window position −w ≤ i ≤ w, and all states p, q, r ∈ Q (including the gap state ξ),

are

σc,i(p, r) ≤ σc,i(p, q) + σc,i(q, r) . (5)

These reduce to simpler inequalities when states p, q, r are not all distinct or co-

incide with the gap state (which we do not enumerate here). A consequence of

constraint (5) is that the resulting distance functions dc also satisfy the triangle-

inequality property, as we prove in Section 2.5. This property allows us to use

faster metric-space data structures for computing the nearest-neighbor distance δ

as discussed in Section 2.3.1.

The remaining constraints, for all structured classes c ∈ C − {⊥}, positions

−w ≤ i ≤ w, states p, q ∈ Q, and gap state ξ, are

σc,i(p, q) = σc,i(q, p) , (6)

σc,i(p, p) ≤ σc,i(p, q) , (7)

σc,i(p, q) ≥ 0 , (8)

σc,i(ξ, ξ) = 0 , (9)

τ ≥ 0 , (10)

which ensure the distance functions are symmetric and non-negative. (We do not

enforce the other metric conditions dc(W,W ) = 0 and dc(V,W ) > 0 for V 6= W , as

these are not needed for our coreness estimation task, and we prefer having a less

constrained distance dc that might better minimize the following error objective.)

Finally, the objective function minimizes the average error over all training sample

windows. Formally, we minimize

α 1
|C|−1

∑
c∈C−{⊥}

1
|Sc|

∑
W ∈Sc

1
k

∑
V ∈Nc(W,k)

eVW + (1−α) 1
|C|

∑
c∈C

1
|Sc|

∑
W ∈Sc

fW ,

where 0 ≤ α ≤ 1 is a blend parameter controlling the weight on target error versus

impostor error. We note that in an optimal solution to this linear program, variables
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eVW = max
{
dc(V,W )− τ, 0

}
and fW = maxV,b

{
τ − db(V,W ) + 1, 0

}
, since in-

equalities (1)–(4) ensure the error variables are at least these values, while minimiz-

ing the above objective function ensures they will not exceed them. Thus solving the

linear program finds distance functions dc, given by substitution scores σc,i(p, q),

that minimize the average over the training windows W ∈ Sc of the amount of vi-

olation of our ideal conditions dc(V,W ) ≤ τ for targets V ∈ Tc and db(V,W ) > τ

for impostors V ∈ Tb.
To summarize, the variables of the linear program are the substitution scores

σc,i(p, q), the error variables eVW and fW , and the threshold variable τ . For n to-

tal training sample windows, k targets per sample window, m window classes

of width w, and amino-acid alphabet size s, this is Θ(kn + s2wm) total vari-

ables. The main constraints are the target constraints, impostor constraints,

and triangle inequality constraints. For ` impostors per sample window, this

is Θ
(
(k + `m)n + s3wm

)
total constraints. We ensure that solving the linear pro-

gram is tractable by controlling the number k of targets, the number ` of impostors,

and the total size n of the training sample.

2.5 Ensuring the triangle inequality

We now show that the distance functions obtained by solving the above linear

program obey the triangle inequality.

Theorem 1 (Triangle Inequality on Window Distances) The class distance func-

tions dc obtained by solving the linear program satisfy the triangle inequality.

Proof For every class c, and all windows U , V , and W ,

dc(U,W ) =
∑
i

∑
p,r

Ui(p) Wi(r) σc,i(p,r)

=
∑
i

∑
p,q,r

Ui(p) Vi(q) Wi(r) σc,i(p,r) (11)

≤
∑
i

∑
p,q,r

Ui(p) Vi(q) Wi(r)
(
σc,i(p,q) + σc,i(q,r)

)
(12)

=
∑
i

∑
p,q,r

Ui(p) Vi(q) Wi(r) σc,i(p,q)

+
∑
i

∑
p,q,r

Ui(p) Vi(q) Wi(r) σc,i(q,r)

=
∑
i

∑
p,q

Ui(p) Vi(q) σc,i(p,q)

+
∑
i

∑
q,r

Vi(q) Wi(r) σc,i(q,r) (13)

= dc(U, V ) + dc(V,W ) ,

where equation (11) follows from the identity
∑
q Vi(q) = 1, inequality (12) fol-

lows from constraint (5) in the linear program, and equation (13) follows from the

identities
∑
rWi(r) =

∑
p Ui(p) = 1.

In short, dc(U,W ) ≤ dc(U, V ) + dc(V,W ) for all windows U, V,W , so the triangle

inequality holds on distances dc.
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Since window distances satisfy the triangle inequality, we can use fast data struc-

tures for metric-space nearest-neighbor search to evaluate the coreness estimator,

as discussed in Section 2.3.1.

3 Applying coreness to accuracy estimation
The Facet alignment accuracy estimator [3] is a linear combination of efficiently-

computable feature functions of an alignment that are positively correlated with

true accuracy. As mentioned earlier, the true accuracy of a computed alignment is

measured only with respect to core columns of the reference alignment. We leverage

our coreness predictor to improve the Facet estimator by: (1) creating a new feature

function that attempts to directly estimate true accuracy, and (2) concentrating the

evaluation of existing feature functions on columns with high predicted coreness.

3.1 Creating a new coreness feature

Our new feature function on alignments, which we call Predicted Alignment Core-

ness, is similar to the so-called total-column score sometimes used to measure align-

ment accuracy. Predicted Alignment Coreness counts the number of columns in the

alignment that are predicted to be core, by taking a window W around each col-

umn, and counting the number of windows whose predicted coreness value χ(W )

exceeds a threshold κ. This count of predicted core columns in the given alignment

is normalized by an estimate of the number of true core columns in the unknown

reference alignment of the sequences.

Formally, the Predicted Alignment Coreness feature function FAC for computed

alignment A of sequences S is

FAC(A) :=
1

L(S)

∣∣∣{W ∈ A : χ(W ) ≥ κ
}∣∣∣ ,

where the notation W ∈ A refers to all windows of columns of A.

The normalizing function L in the denominator is designed to be positively cor-

related with the number of core columns in the reference alignment for S. (The

normalizer L is a function only of S, and not alignment A, so that all alternate align-

ments of S are normalized by the same quantity. Thus ranking alternate alignments

by FAC orders them by the numerator: their predicted number of core columns.) The

family of functions that we consider for the normalizer L of feature FAC are linear

combinations of products of at most three factors from the following:

• aggregate measures of the lengths of sequences in S, namely their minimum,

mean, and maximum length;

• averages over all pairs of sequences in S of the ratio of their longest-common-

subsequence length divided by an aggregate measure of the lengths of the pair

of sequences (which can be viewed as forms of “percent identity”);

• averages over all pairs of sequences of the ratio of their difference in sequence

length divided by an aggregate length measure (forms of “percent indel”);

and

• averages over all pairs of sequences of the ratio of aggregate length measures

for the pair (forms of “relative indel”).
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More precisely, each term of the linear combination is a product whose factors are

one aggregate length measure, and at most two average ratios from different groups

in the above. Finally, we learn the normalizer from training data by solving a linear

program to find coefficients of the linear combination that minimize its L1-norm

with the true number of core columns, across training protein benchmarks.

The final fitted function L(S) that we use for the new Predicted Alignment Core-

ness feature is given in Section 4.2.2.

3.2 Augmenting existing features by coreness

In addition to using the coreness regressor to directly estimate the accuracy of an

alignment via the new feature function FAC, we also augment some of the existing

feature functions in Facet to concentrate their evaluation on columns with higher

predicted coreness (since only on core columns is true accuracy measured). A full

description of all feature functions in Facet is in [3]. The existing features that we

augment using the coreness regressor are Secondary Structure Blockiness, Secondary

Structure Identity, Amino Acid Identity, and Average Substitution Score. Each of

these features can be viewed as a sum across columns of a quantity computed over

all residue pairs in a column; in the augmented feature, this is now a weighted sum

across columns, with columns weighted by their predicted coreness value. These

augmented features are described in more detail below.

• Secondary Structure Blockiness FBL uses secondary structure predictions on

the alignment’s proteins obtained from PSIPRED [13], and returns the maxi-

mum total score of an optimal packing of secondary structure blocks in the

alignment, normalized by the total number of residue pairs in the alignment’s

columns, where: a block is an interval of columns together with a subset of the

sequences such that all residues in the block have the same secondary structure

prediction, a packing is a set of blocks whose column intervals are all disjoint,

and the score of a block is the total number of pairs of residues within the

columns in the block. (So an optimal packing maximizes the number of pairs

of residues in the alignment’s columns that are covered by blocks of consistent

predicted secondary structure.) We create a new augmented feature F ′BL by

weighting the number of residue pairs for a column by the column’s predicted

coreness value.

• Secondary Structure Identity FSI is the fraction of residue pairs in columns of

the computed alignment that share the same predicted secondary structure.

We create a new feature F ′SI by weighting counts of column residue pairs by

their column’s predicted coreness.

• Amino Acid Identity FAI is the fraction of column residue pairs that share

the same amino-acid equivalence class. The augmented feature F ′AI weights

residue pairs by their column’s predicted coreness.

• Average Substitution Score FAS is the average BLOSUM62 score [19] of all col-

umn residue pairs, with BLOSUM similarity scores scaled to the range [0, 1].

The augmented feature F ′AS weights this average by the column’s predicted

coreness.
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Other existing features not augmented by coreness that are used in their original

form in the improved Facet estimator are the following. (Full details on these

features are in [3].)

• Secondary Structure Agreement FSA uses predicted secondary structure confi-

dences from PSIPRED (the confidence that a residue is in each of the three sec-

ondary structure states) to estimate the probability that each column residue

pair shares the same secondary structure state, in a weighted window centered

on each pair, and averages these estimates over all pairs.

• Gap Open Density FGO is the fraction of gap characters (‘-’) in the alignment

that start a run of such characters.

• Gap Extension Density FGE is the fraction of alignment entries that are gap

characters (‘-’).

The final improved Facet estimator that uses these features is given in Sec-

tion 4.2.1.

4 Assessing the coreness predictor
We evaluate our new approach to coreness prediction, and its use in accuracy es-

timation for alignment parameter advising, through experiments on a collection of

protein multiple sequence alignment benchmarks. A full description of the bench-

marks, and the universe of parameter choices for parameter advising, is given in [3].

Briefly, the benchmarks in our experiments consist of reference alignments of

protein sequences largely induced by structurally aligning their known three-

dimensional folded structures. We use the BENCH benchmark suite of Edgar [20],

supplemented by a selection from the PALI benchmark suite of Balaji et al. [1]. Our

full benchmark collection consists of 861 reference alignments.

We use twelve-fold cross-validation to assess both column classification with our

coreness predictor, and parameter advising with our augmented accuracy estima-

tor. To correct for the overabundance of easy-to-align benchmarks when assessing

parameter advising, we bin the benchmarks according to difficulty, measured by the

true accuracy of their alignment computed by the Opal aligner [21, 22] under its

default parameter setting. We ensure folds are balanced in their representation of

benchmarks from all difficulty bins. For each fold, we generate a training set and

testing set of example alignments by running Opal on each benchmark for each

parameter choice from a fixed universe of 243 parameter settings.

4.1 Constructing the coreness predictor

We first discuss results on learning the distance functions for the coreness predictor,

and then discuss results on fitting its transform functions.

4.1.1 Learning the distance functions

To keep the size manageable of the linear program that we solve to learn the window

class distance functions dc, we use a training sample of 2,000 total windows repre-

senting the structured classes. We find targets and impostors for windows from the

training sample by performing nearest-neighbor searches in training sets that for

each fold have 4,000 windows from each structured window class. For each window
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from the training sample, the linear program uses 2 targets, and 150 impostors from

each window class. For testing the accuracy of our learned coreness predictor, we

use testing sets of 2,000 total windows representing all classes (including the un-

structured class). The windows for these training samples, training sets, and testing

sets are drawn from corresponding training and testing example alignments.

We form the initial sets of targets and impostors for the linear program by either:

(1) performing nearest-neighbor searches using a default distance function whose

positional substitution score is a convex combination of (a) the VTML200 substitu-

tion score on the states’ amino acids (transformed to a dissimilarity value in the

range [0, 1]), and (b) the identity function on the states’ secondary structure types,

with positions weighted so the center column has twice the weight of its flanking

columns; or (2) randomly sampling windows from the appropriate classes to choose

targets and impostors, as further discussed below.

Once a distance function is learned by solving the linear program, we can iterate

the process by using the learned distance function to recompute the sets of targets

and impostors for another instance of the linear program, that is in turn solved

to learn a new distance function. Table 1 shows results for this iterative process,

where we use our coreness regressor to classify columns by simply thresholding

the column’s predicted coreness value to obtain a binary classification of “core”

(above the threshold) or “non-core” (at most the threshold). Beginning with the

distance function learned at the first iteration from the initial default distance,

Table 1 gives the area under the curve (AUC) measure for the receiver operating

characteristic (ROC) curve, which implicitly considers all possible thresholds for

the classifier, across ten iterations on both training and testing data.

Note that the training AUC steadily increases for the first four iterations, and

then oscillates around a high plateau. This does not translate, however, into an

improvement in the testing AUC, which actually drops and then oscillates at a

much lower level.

While iterating distance learning markedly improves this core column classifier

on the training examples, it is overfitting, and does not generalize well to testing

examples. This may be due to the smaller training sample and training sets used

to reduce the time for solving the linear program.

Interestingly, we found that using random examples from appropriate window

classes for the target and impostor sets led to much better generalization. Specifi-

cally, this achieved a training and testing AUC of 86.0 and 88.6, respectively. Ac-

cordingly, in the remainder of the paper we use distance functions obtained by

solving the linear program with random target and impostor sets, and no iteration,

when assessing results on parameter advising.

4.1.2 Transforming distance to coreness

Figure 1 shows the fitted logistic functions fcore and fnon used to transform nearest-

neighbor distance to predicted coreness, superimposed on the underlying true core-

ness data for one fold of training examples. The horizontal axis is nearest-neighbor

distance δ, while the vertical axis is the average true coreness of training examples

at that distance (where this average is computed as detailed in Section 2.3.2). The

blue and red curves show the average true coreness of training examples for which
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the nearest neighbor is in respectively either a core class or a structured non-core

class. The top and bottom green curves show the logistic transform functions for

respectively the core and non-core classes, fitted to this training data. Note that

the green logistic curves fit the data quite well.

Interestingly, when a column’s window is sufficiently far away from all structured

classes (including core and non-core classes), the green fcore and fnon logistic curves

both converge to a predicted coreness around 33% (which roughly agrees with the

blue and red empirical average coreness curves).

4.2 Improving parameter advising

A parameter advisor and has two components: (1) an accuracy estimator, which

estimates the accuracy of a computed alignment, and (2) an advisor set, which is a

set of candidate assignments of values to the aligner’s parameters. The advisor picks

the choice of parameter values from the advisor set for which the aligner yields the

computed alignment of highest estimated accuracy.

In our parameter advising experiments, we assess the true accuracy of the mul-

tiple sequence alignment tool Opal [21, 22] combined with an advisor that uses

the accuracy estimator Facet [3] (the best estimator for parameter advising in

the literature), augmented by our new coreness predictor as well as by two other

column-quality tools: TCS [11] and ZORRO [10]. We compare these advising results

against prior approaches using for the estimator both the original unmodified Facet

as well as TCS (the next-best estimator for parameter advising in the literature).

We also compare against augmenting Facet by true coreness, which represents the

unattainable limit reached by a perfect coreness predictor.

These experiments focus on advising for the Opal aligner, as it is an ideal test

bed for studying parameter advising: in contrast to other aligners, at each node

of the guide tree during progressive alignment, Opal computes subalignments that

are optimal with respect to the given parameter choice for the sum-of-pairs scoring

function with affine gap costs [23].

In parameter advising, the choice of advisor set is crucial, as the performance of

the advisor is limited by the quality of the computed alignments generated by this

set of parameter choices. We consider two types of advisor sets [24, 25]:

• estimator-independent oracle sets, which are learned for a conceptual oracle

advisor that has access to true accuracy for its estimator, by solving an integer

linear program to achieve optimal advising accuracy on training data; and

• estimator-aware greedy sets, which are learned for a specific concrete estimator

by a greedy approximation algorithm that guarantees near-optimal training

accuracy, and which tend to perform better than oracle sets in practice when

used with their concrete estimator.

(We emphasize that when using oracle sets for the advisor set in our experiments,

they are always used in conjunction with a concrete imperfect accuracy estimator.)

These advisor sets are drawn from a larger universe of possible parameter choices.

We use the universe of 243 parameter choices enumerated in [24].

As mentioned earlier, we bin alignments according to difficulty to correct for the

overabundance of easy-to-align benchmarks. Figure 5 lists in parentheses above the
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bars the number of benchmarks in each bin. When reporting advising accuracy,

we give the true accuracy of the alignments chosen by the advisor, uniformly aver-

aged over bins (rather than uniformly averaging over benchmarks). With this equal

weighting of bins, an advisor that uses only the single optimal default parameter

choice will achieve an average advising accuracy of roughly 50% (demonstrated by

the black “default” bar on the far right in Figure 5). This establishes, as a point of

reference, advising accuracy 50% as the baseline against which to compare advising

performance.

4.2.1 The augmented Facet estimator

We use our coreness predictor to modify the Facet accuracy estimator by includ-

ing the new Predicted Alignment Coreness feature of Section 3.1, and augmenting

existing feature functions by coreness as in Section 3.2. We learned coefficients for

these feature functions, as well as all the features originally in Facet, using the

difference-fitting technique described in [3].

The new alignment accuracy estimator that uses our coreness predictor has non-

zero coefficients for

• the new feature: Predicted Alignment Coreness FAC;

• two features augmented by our coreness predictor: Secondary Structure Iden-

tity F ′SI, and Secondary Structure Blockiness F ′BL; and

• five original unaugmented features: Secondary Structure Agreement FSA, Sec-

ondary Structure Identity FSI, Secondary Structure Blockiness FBL, Gap Ex-

tension Density FGE, and Gap Open Density FGO.

To give an idea of how these augmented and unaugmented features behave, Fig-

ure 2 shows the correlation between feature values and true accuracy for computed

alignments. On the left is Secondary Structure Identity, on the right is Secondary

Structure Blockiness, and on the top and bottom are respectively the original and

augmented versions of these features. (For reference, least-squares lines are shown

fitted to the data, where points are weighted so each accuracy decile has the same

total weight.) Note in the scatterplots that the augmented features have somewhat

higher slope and lower spread than their unaugmented versions. This can yield

a stronger feature for discriminating high-accuracy from low-accuracy alignments,

which may explain their inclusion in the new fitted estimator.

The resulting augmented accuracy estimator is

(0.656)F ′SI + (0.128)F ′BL + (0.123)FSA + (0.089)FSI + (0.064)FBL +

(0.015)FAC + (0.007)FGE + (0.006)FGO .

(The above coefficients are fitted over all benchmarks; in our cross-validation exper-

iments of Section 4.2.3, the estimator used for each fold is fitted only over the bench-

marks in the training set for that fold.) We mention that these feature functions

have different ranges, so the magnitudes of their coefficients should not necessarily

be interpreted in terms of the importance of the feature.

To illuminate how the new augmented estimator behaves, Figure 3 shows the

correlation on computed alignments between estimator value and true accuracy for

the final augmented Facet estimator, original unaugmented Facet, and the TCS
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estimator. (Fitted least-squares lines are shown, with points weighted so each accu-

racy decile has the same weight.) Note that augmented Facet again has somewhat

higher slope and lower spread than its original version. On the other hand, TCS has

the highest slope, but also the highest spread. This may explain why augmented

Facet performs better for parameter advising, as explored in Section 4.2.3.

4.2.2 The coreness feature normalizer

The normalizer function L(S) used in Predicted Alignment Coreness (feaure FAC),

gives an estimate of the number of core columns in the unknown reference alignment

of sequences S, and is a linear combination of basic measures of S, as described ear-

lier in Section 3.1. Optimal coefficients for this linear combination are learned by

minimizing its L1-norm with the true number of core columns in training bench-

marks.

The fitted estimator L(S) for Predicted Alignment Coreness is

(1.020) `min pmax qmin + (0.151) `min qmin + (0.035) `avg pmax qavg +

(0.032) `avg pmin rmin + (0.003) `max pavg ravg ,

where, as described in Section 3.1,

• `min, `avg, `max are respectively the minimum, average, and maximum se-

quence lengths in S;

• pmin, pavg, pmax, similar to percent identity measures, are the longest-

common-subsequence length for each pair of sequences normalized by re-

spectively the minimum, average, and maximum sequence length for the pair,

averaged over all pairs;

• qmin, qavg are quotients of respectively the minimum or average sequence

length for each pair of sequences divided by the maximum length for the

pair, averaged over all pairs; and

• rmin, ravg are ratios of the difference in sequence lengths for each pair of

sequences divided by respectively the minimum and average sequence length

for the pair, averaged over all pairs.

(The above coefficients are fitted over all benchmarks; in our cross-validation ex-

periments, the normalizer for each fold is fitted only over the training benchmarks

for that fold.)

Figure 4 shows in a scatterplot the correlation between this estimate of the number

of core columns and the true number of core columns for each benchmark. While

the fitted estimator does correlate with the true number of core columns, it tends

to overestimate, possibly due to larger benchmarks having more columns that are

close to—but not quite—core.

4.2.3 Performance on parameter advising

We assess the performance of parameter advising when the advisor uses for its

accuracy estimator:

• the augmented Facet estimator (“Facet/predicted”),

in comparison with
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• the original unaugmented Facet estimator (“Facet/none”),

• Facet augmented by TCS (“Facet/TCS”),

• Facet augmented by ZORRO (“Facet/ZORRO”), and

• Facet augmented by true coreness (“Facet/true”).

We also compare with

• TCS (the next-best estimator for advising in the literature).

For the advisor set of parameter choices that the advisor picks from using these

estimators, we consider both oracle and greedy sets [25].

Performance when expanding the parameter choices Figures 6 and 7 show parame-

ter advising performance using oracle and greedy advisor sets, respectively. In both

figures, the horizontal axis is advisor set cardinality (the number of different param-

eter choices available to the advisor), while the vertical axis is advising accuracy for

testing folds (the true accuracy on testing benchmarks of the aligner combined with

the parameter advisor), uniformly averaged across bins. The curves show perfor-

mance with the Opal aligner [21, 22]. For reference, the default alignment accuracy

for three other popular aligners, MAFFT [26], MUSCLE [27], and Clustal Omega [28],

is also shown with dashed horizontal lines.

Figure 6 shows that on oracle advisor sets, Facet/predicted compared to

Facet/none boosts the average accuracy of parameter advising by more than 3%.

This increase is in addition to the improvement of Facet over TCS.

Figure 7 shows that on greedy advisor sets, Facet/predicted boosts advising accu-

racy as well: for example, at cardinality 7, by more than 1%. (Note that accuracies

for the greedy set curves are already higher than for oracle sets.) Up to cardinal-

ity 7, the accuracy for Facet/predicted is about halfway between Facet/none and

Facet/true (the unattainable perfect coreness predictor). Interestingly, Facet/TCS

and Facet/ZORRO actually have worse accuracy than Facet/none.

Performance when generalizing to new data While with greedy advisor sets, using

predicted coreness to augment Facet does boost advising accuracy, a larger improve-

ment might be realized by pairing with a better approach to finding estimator-aware

advisor sets than greedy set-finding. The boost in accuracy we observe may actually

be limited by the methods we are using to find advisor sets for the improved esti-

mator. As an indication, Figure 8 contrasts average training and testing accuracy

for advising with Facet/predicted on greedy sets: specifically, the accuracy using

greedy sets that were learned on training benchmarks when these same sets are

applied to testing benchmarks. The upper dashed curve is average training advising

accuracy, while the lower solid curve is testing accuracy. The drop between these

curves indicates greedy set-finding is overfitting to training data, and not general-

izing well to testing data. With better generalization, we might also continue to get

improved performance at set sizes beyond cardinality 7, where greedy advisor sets

currently plateau.

Performance within difficulty bins Advising accuracy within difficulty bins for

greedy sets of cardinality 7 is shown earlier in Figure 5. In this bar chart, for the bin
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at each difficulty on the horizontal axis, advising accuracy averaged over just the

benchmarks in the bin is shown on the vertical axis. The final chart on the right gives

accuracy averaged across all bins. On difficult benchmarks, Facet/predicted boosts

the accuracy of Facet/none by more than 3%. Note also how close Facet/predicted

is to Facet/true: the advising accuracy is already quite close to what could be

achieved augmenting with a perfect coreness predictor.

For a point of reference, advising accuracy uniformly-averaged over benchmarks

(rather than bins), on greedy sets of cardinality 10, is: for Facet/none, 81.9%; and

for Facet/predicted, 82.2%. By comparison, on these same benchmarks the corre-

sponding average accuracy of other popular aligners using their default parameter

settings is: Clustal Omega, 77.3%; MUSCLE, 78.1%; MAFFT, 79.4%; and Opal, 80.5%.

5 Conclusion
We have developed a column coreness predictor for protein multiple sequence align-

ments that uses a regression function on nearest neighbor distances for class distance

functions learned by solving a new linear programming formulation. When applied

to alignment accuracy estimation and parameter advising, the coreness predictor

strongly outperforms other column confidence estimators from the literature, and

provides a substantial boost in advising accuracy.

Further research

A key issue left to explore is how to improve the generalization of distance-function

learning and greedy advisor-set learning. Currently both tend to overfit to train-

ing data, resulting in a loss of testing accuracy. One way to address overfitting in

distance learning would be to lower the number of substitution-score parameters

in the learned distance functions by using reduced protein-sequence alphabets with

amino-acid equivalence classes, which should aid generalization.

Another very promising research direction is to apply the improved accuracy

estimator to ensemble multiple sequence alignment [5], where the estimator is used

to pick the alignment output by an ensemble of sequence aligners. Any improvement

in the estimator should yield further accuracy boosts for ensemble alignment.
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Figure 1 Fit of the distance transform functions to true coreness. The blue and red curves track
on the vertical axis the average true coreness of training examples, whose nearest neighbor is
respectively from a core or non-core class, at their corresponding nearest-neighbor distance on the
horizontal axis. Average coreness is computed as described in Section 2.3.2, with count ` = 100.
The top and bottom green curves respectively show the fitted logistic functions fcore and fnon
that are used by the coreness regressor to transform nearest-neighbor distance into predicted
coreness.

28. Sievers, F., et al.: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal

Omega. Molec. Sys. Bio. 7(1), 539–539 (2011)

Table 1 Core Column Classifier Area-Under-the-Curve (AUC) for Training and Testing Data with
Iterated Distance Learning

Iteration
1 2 3 4 5 6 7 8 9 10

Training 88.7 94.3 99.2 99.4 99.5 99.7 99.6 99.7 99.4 99.7
Testing 84.7 81.3 80.8 80.0 83.4 82.5 81.2 80.9 80.3 81.6
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Figure 2 Correlation of augmented and unaugmented feature functions with true accuracy. The
scatterplots show the correlation with true accuracy of alignment feature functions for the Facet
accuracy estimator. Points in the scatterplots correspond to computed alignments for benchmarks
with known reference alignments; all scatterplots are over the same set of alignments. The vertical
axis is the feature function value, while the horizontal axis is true accuracy of the computed
alignment with respect to the reference. The top and bottom scatterplots correspond respectively
to unaugmented and augmented versions of the same feature function: on top is the original
unaugmented Facet feature, and on the bottom is this feature augmented with predicted
coreness. The plotted feature functions are: (a) original Secondary Structure Identity FSI,
(b) original Secondary Structure Blockiness FBL, (c) augmented Secondary Structure
Identity F ′

SI, and (d) augmented Secondary Structure Blockiness F ′
BL.
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Figure 3 Correlation of estimators with true accuracy. The scatterplots show the correlation with
true accuracy of alignment accuracy estimators. Points correspond to computed alignments for
benchmarks; all scatterplots show the same alignments. The vertical axis is the estimator value;
the horizontal axis is alignment true accuracy. The plotted accuracy estimators are: (a) the Facet
estimator augmented with predicted coreness, (b) the original unaugmented Facet estimator, and
(c) the TCS estimator.
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Figure 4 Correlation of the estimated and true number of core columns. Each point in the
scatterplot corresponds to a reference alignment from the collection of 861 benchmarks. The
horizontal axis is the true number of core columns in the alignment, while the vertical axis is the
estimated number of core columns for the alignment’s sequences S, computed using the fitted
function L(S) from Section 4.2.2.
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Figure 5 Advising accuracy within benchmark bins. This bar chart shows results within each bin
of benchmarks, where bins group benchmarks by difficulty, for parameter advising with greedy
advisor sets of cardinality 7. For each of the ten bins listed along the horizontal axis, the vertical
axis gives advising accuracy, averaged over the benchmarks in the bin; on the far right is an
average of all ten bin-averages. Bins are labeled on the horizontal axis by the upper limit of their
difficulty range, where the difficulty of a benchmark is the true accuracy of its alignment
computed by the Opal aligner under its default parameter setting. The colored bars in each bin
show average advising accuracy for Opal using: its optimal default parameter setting, in black;
advising with the original unaugmented Facet estimator, in green; and advising with Facet
augmented by predicted coreness, in red. The dashed line shows average advising accuracy for
each bin if Facet were augmented by true coreness: the limit achieved by a perfect coreness
predictor. In parentheses above the bars is the number of benchmarks in each bin (while on the
far right is their total number).



DeBlasio and Kececioglu Page 26 of 22

46% 

48% 

50% 

52% 

54% 

56% 

58% 

60% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

A
dv

is
in

g 
A

cc
ur

ac
y 

Advisor Set Cardinality 

   Facet/true 
   Facet/predicted 
   Facet/none 
   Facet/Zorro 
   Facet/TCS 
   TCS 

Oracle	Sets	

Clustal Omega

MAFFT
Muscle

Facet/true 
Facet/predicted 
Facet/none 
Facet/Zorro
Facet/TCS 
TCS

Figure 6 Advising accuracy using oracle sets. This figure plots average advising accuracy using
oracle advisor sets with different estimators, at varying set cardinalities. The horizontal axis is the
cardinality of the advisor set: the number of parameter choices from which the advisor selects.
The vertical axis is average true accuracy of the parameter advisor, where the average accuracy
within each difficulty bin is then averaged across bins. The curves plot advisors using: the Facet
estimator augmented by predicted coreness, the original Facet estimator with no augmentation,
Facet augmented by TCS column quality scores, Facet augmented by ZORRO quality scores, and
using TCS as the estimator. The dashed black curve is Facet augmented by true coreness: the
limit attained with a perfect coreness predictor. As baselines for comparison, the dashed grey lines
are the average accuracies of the standard aligners MAFFT, MUSCLE and Clustal Omega, under their
default parameter settings.
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Figure 7 Advising accuracy using greedy sets. Similar to Figure 6, this plots average advising
accuracy using greedy advisor sets learned for different estimators. The horizontal axis is the
cardinality of the advisor set; the vertical axis is the average true accuracy of the parameter
advisor. The curves plot the average accuracy of advisors that use greedy sets learned for the
following estimators: Facet augmented by predicted coreness, unaugmented Facet, Facet
augmented by TCS, Facet augmented by ZORRO, and TCS alone. The dashed black curve
represents Facet augmented by true coreness. The dashed grey lines are the average accuracies of
MAFFT, MUSCLE and Clustal Omega using default parameter settings.
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Figure 8 Training and testing accuracy using greedy advisor sets. The figure plots average
advising accuracy on training and testing benchmarks, using greedy advisor sets learned for the
Facet accuracy estimator augmented by predicted coreness. The horizontal axis is advisor set
cardinality; the vertical axis is advising accuracy uniformly averaged across difficulty bins. The
dashed and solid curves give accuracies for training and testing benchmarks respectively, averaged
over cross-validation folds. Since each benchmark is in the testing set of exactly one fold, and the
training set of all other folds, averaging over folds uniformly averages over benchmarks.


