Adaptive Local Realignment talk at ISMB 2016 time announced

I will be giving a talk titled  “Boosting alignment accuracy through adaptive local realignment” at ISMB 2016 in session TP021 on Sunday, 10 July at 2:00 PM in the Northern Hemisphere E1/E2 room. This will be a late breaking research talk so there is no associated publication yet, but information about using adaptive realignment can be found on the Facet website at http://facet.cs.arizona.edu/realignment.html. I will also be presenting a poster on the same work, during the Monday poster session you can find me at poster number N22. A preprint is also on bioRxiv DOI 10.1101/063131.

Welcome to the updated website

I recently converted my website to WordPress. Even though I used to work in web development myself, I no longer have the time or interest in maintaining a custom built website. I am hoping that by having a content management system updates when new publications and events happen will be more easily managed.

Research Summary

deblasio_dan_croppedMy research interest are broadly in algorithm design and analysis, and I take inspiration from biological problems. Many times this not only leads to an interesting computer science result, but a useful biological tool (see Software).

I am currently a Lane Fellow in the Computational Biology Department at Carnegie Mellon University working with Carl Kingsford.

I was previously a PhD student in the Computer Science Department at the University of Arizona working with John Kececioglu and a student in the CS Department Department at the University of Central Florida working with Shaojie Zhang.

In the past my work has focused mainly on multiple sequence alignment problems. Most recently I worked on improving accuracy of protein multiple sequence alignments. Multiple sequence alignment is a fundamental step in bioinformatics, but the problem is NP-complete. Because of the importance of the result and complexity of the multiple sequence alignment problem many algorithms exist to find high quality alignments in practice. Each of these algorithms has a large number of tunable parameters that can greatly affect the quality of the computed alignment. Most users rely on the default parameter choices, which produce the best alignments on average, but produce poor alignments for some inputs. We developed a process called parameter advising which selects parameter choices that produces a high quality alignment for the input. To accomplish this candidate alignments are produced using each of the parameter choices in an advising set, the accuracy of these candidate alignments is then estimated using an advising estimator, the candidate alignment with the highest estimated accuracy is then selected for the user. To estimate the alignment accuracy we developed Facet (Feature-based accuracy estimator) which is a linear combination of efficiently-computable feature functions. We have found that learning an optimal advisor (selecting both the estimator coefficients and the set of parameter choices) is NP-complete. We expanded this result to show that finding the estimator coefficients or the estimator set independently is also NP-complete. In practice, we have methods to find close-to optimal advisors. We are working on ways to improve the accuracy of these parameter advisors.

I have also worked on improving the memory consumption of secondary structure conscious RNA multiple sequence alignment (see PMFastR) and high throughput phylogeny filtering (see SiClE).