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Abstract. While mutation rates can vary markedly over the residues
of a protein, multiple sequence alignment tools typically use the same
values for their scoring-function parameters across a protein’s entire
length. We present a new approach, called adaptive local realignment,
that in contrast automatically adapts to the diversity of mutation rates
along protein sequences. This builds upon a recent technique known
as parameter advising that finds global parameter settings for aligners,
to adaptively find local settings. Our approach in essence identifies lo-
cal regions with low estimated accuracy, constructs a set of candidate
realignments using a carefully-chosen collection of parameter settings,
and replaces the region if a realignment has higher estimated accuracy.
This new method of local parameter advising, when combined with prior
methods for global advising, boosts alignment accuracy as much as 26%
over the best default setting on hard-to-align protein benchmarks, and
by 6.4% over global advising alone. Adaptive local realignment, imple-
mented within the Opal aligner using the Facet accuracy estimator, is
available at facet.cs.arizona.edu.

Keywords. Multiple sequence alignment, iterative refinement, local mu-
tation rates, alignment accuracy, parameter advising.

1 Introduction

Ever since the 1960s, it has been known that proteins can have distinct muta-
tion rates at different locations along the molecule [11]. The amino acids at some
positions in a protein may stay unmutated for long periods of time, while other
regions change a great deal (sometimes called “hypermutable regions”). This has
led to methods in phylogeny construction that take variable mutation rates into
account when building trees from sequences [26]. In multiple sequence alignment,
however, variation in mutation rates across sequences to our knowledge has yet
to be successfully exploited to improve alignment accuracy. Multiple sequence
alignments are typically computed using a single setting of values for the param-
eters of the alignment scoring function. This single parameter setting affects how
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(a) Using the optimal default parameter setting
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(b) After adaptive local realignment

Fig. 1. Effect of adaptive local realignment. Two alignments of the same region of
benchmark BB11007 from the BAliBASE suite, where the amino acids highlighted in red
uppercase are from the so-called core columns of the reference alignment, which should
be aligned in a correct alignment. (a) The alignment computed by Opal using its opti-
mal default parameter setting (VTML200, 45, 11, 42, 40) across the sequences, with an ac-
curacy of 89.6%. The regions of the alignment in gray boxes are automatically selected
for realignment. (b) The outcome of adaptive local realignment, with an improved
accuracy of 99.6%, that uses different parameters settings in each region. The realign-
ments of the three regions use alternate parameter settings (BLOSUM62, 45, 2, 45, 42),
(BLOSUM62, 95, 38, 40, 40), and (VTML200, 45, 18, 45, 45), respectively.

residues across a protein are aligned, and implicitly assumes uniform mutation
rates. In contrast, the approach of this paper identifies alignment regions that
may be misaligned under a single parameter setting, and finds alternate settings
that may more closely match the local mutation rate of the sequences.

We present a method that takes a given alignment and attempts to improve
its overall accuracy by replacing sections of it with better subalignments, as
demonstrated in Figure 1. The top alignment of the figure was computed using
a single parameter setting: the optimal default setting of the Opal aligner [25].
The bottom alignment is obtained by our new method, taking the top align-
ment, automatically identifing the sections in gray boxes, and realigning them
using alternate parameter settings, as described later in Section 3. This increases
the overall alignment accuracy by 10%, as most of the misaligned core blocks
(highlighted in red uppercase) are now corrected.

Related work. Methods that partition a set of sequences to align or realign them
can be grouped into two categories, based on the orientation of their parti-
tions. Vertical realigners cut the input sequences into substrings, and once these
shorter substrings are realigned, they stitch their alignments together. Horizon-
tal realigners split an alignment into groups of whole sequences, which are then
merged together by realigning between groups, possibly using the induced sub-
alignment of each group. Realignment is occasionally called alignment polishing.

Crumble and Prune [21] is a pair of algorithms for performing both vertical
(Crumble) and horizontal (Prune) splits on an input set of sequences. The ob-
jective, however, for splitting sequences both vertically and horizontally within
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Crumble and Prune is not to improve accuracy, but to reduce running time and
memory consumption, making aligning a large number of long sequences feasible.

Gotoh [12] presented several horizontal methods for heuristically aligning
two multiple sequence alignments, which he called “group-to-group” alignment.
This can be used for alignment construction in a progressive aligner, proceeding
bottom-up over the guide tree and applying group-to-group alignment at each
node, or for polishing an existing alignment by assigning sequences to two groups
and using it to realign the groups.

AlignAlign [16] is unique as a horizontal method in that it implements an
exact algorithm for optimally aligning two multiple sequence alignments under
the sum-of-pairs scoring function with affine gap costs. This optimal group-to-
group alignment algorithm, used for both alignment construction and alignment
polishing, forms the basis of the Opal aligner [25].

The standard aligners MUSCLE [10], MAFFT [14], and ProbCons [8] also include
a polishing step that performs horizontal realignment similar to Gotoh.

While realignment attempts to correct errors in existing alignments that were
made during the alignment process, several tools attempt to avoid making these
errors in the first place by adjusting parameter values along the sequences during
alignment construction. For example, PRANK [17] uses a multi-level HMM that
effectively chooses the alignment scoring function at each position. T-Coffee [19]
uses consistency between pairwise alignments to create position-specific substi-
tution scores. In fact, even the early tool ClustalW [23] adjusted positional gap-
penalties based on pairwise sequence characteristics. Nevertheless, these tools
which adjust positional alignment scores all attain lower accuracies on protein
benchmarks than the aligners which make no positional adjustments that we
compare against in our experiments.

Adaptive local realignment, in contrast, is a vertical approach that aims to
improve alignment accuracy, and a meta-method that can be applied to any
aligner with tunable parameters. To our knowledge, this is the first realignment
approach that automatically adapts to varying mutation rates along a protein
and successfully achieves a demonstrable improvement in accuracy.

2 Background on parameter advising

To make the paper self-contained, we briefly review our prior work on parameter
advising. We first review the concept of a parameter advisor, which requires an
estimator of alignment accuracy and a set of parameter choices for the advisor,
and then summarize our prior techniques for learning both an estimator and an
advisor set. (An extensive discussion of parameter advising for multiple sequence
alignment is in [7].)

We emphasize that while this section describes how to find an accuracy esti-
mator and advisor set based on training examples, in practice a user of parameter
advising will simply apply an advisor with a precomputed accuracy estimator
and advisor set, and will not invoke the training procedures described here.
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Fig. 2. The parameter advising process. For an input set of sequences, a parameter
advisor first invokes the aligner for each assignment of parameter values in a collection
of parameter choices. Each parameter choice when used with the aligner produces an
alternate alignment of the sequences. An accuracy estimator is then used to label each
of the alternate alignments with an accuracy estimate. The advisor then returns the
alignment with the highest accuracy estimate.

2.1 Global parameter advising

The goal of parameter advising is to find the parameter setting for an aligner
that yields the most accurate alignment of a given set of input sequences. The
accuracy of a computed alignment is measured with respect to the “correct”
alignment of the sequences (which often is not known). For special benchmark
sets of protein sequences, the gold-standard alignment of the proteins, called their
reference alignment, is usually obtained through structural alignment by finding
the best superposition of the known three-dimensional structures of the proteins.
Columns of the reference alignment that contain a residue from every protein in
the set (where a residue is the amino acid at a particular position in a protein),
and for which the residues in the column are all mutually close in space in the
superposition of the structures, are called core columns. Runs of consecutive
core columns are called core blocks, which represent the regions of the structural
alignment with the highest confidence of being correct. Given such a reference
alignment with identified core blocks, the accuracy of a different, computed
alignment is the fraction of the pairs of residues aligned in the core blocks of
the reference alignment that are also aligned in the computed alignment. (So a
computed alignment of 100% accuracy completely agrees with the reference on its
core blocks, though it may disagree elsewhere.) The best computed alignment is
one of highest accuracy, and the task of a parameter advisor is to find a setting of
the tunable parameters of an aligner that yields an accurate output alignment.
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This setting can be highly input dependent, as the best choice of parameter
values for an aligner can vary for different sets of input sequences.

When aligning sequences in practice, a reference alignment is almost never
known, in which case the true accuracy of a computed alignment cannot be
measured. Instead our parameter advisor relies on an accuracy estimator E that
for an alignment A, gives a value E(A) in the range [0, 1] that estimates the
true accuracy of alignment A. An estimator should be efficiently computable
and positively correlated with true accuracy.

To choose a parameter setting, an advisor takes a set of choices P , where
each parameter choice p ∈ P is a vector that assigns values to all the tunable
parameters of an aligner, and picks the choice that yields a computed alignment
of highest estimated accuracy.

Formally, given an accuracy estimator E and a set P of parameter choices, a
parameter advisor tries each parameter choice p ∈ P , invokes an aligner to com-
pute an alignment Ap using choice p, and then selects the parameter choice p∗

that has maximum estimated accuracy: p∗ ∈ argmaxp∈P

{
E(Ap)

}
. Figure 2

shows a diagram of parameter advising. Since the advisor runs the aligner
|P | times on a given set of input sequences, a crucial aspect of parameter advising
is finding a small set P for which the true accuracy of the output alignment Ap∗

is high.
To construct a good advisor, we need to find a good estimator E and a good

set P . The estimator and advisor set are learned on training data consisting of
benchmark sets of protein sequences for which a reference alignment is known.
The learning procedure tries to find an estimator E and set P that maximize
the true accuracy of the resulting advisor on this training data, which we sub-
sequently assess on separate testing data.

Note that the process of advising is fast: for a set P of k parameter choices,
advising involves computing k alignments under these choices, which can be
done in parallel, evaluating the estimator on these k alignments, and taking a
max. The separate process of training an advisor, by learning an estimator and
advisor set as we review next, is done once, off-line, before any advising is done.

2.2 Learning an accuracy estimator

Our previous work [6, 15] presented an efficient approach for learning an accuracy
estimator that is a linear combination of real-valued alignment feature functions,
based on solving a large-scale linear programming problem. This approach re-
sulted in Facet (short for “feature-based accuracy estimator” [4]), which is cur-
rently the most accurate estimator for parameter advising [15, 5].

This approach assumes we have a collection of d real-valued feature func-
tions g1(A), . . . , gd(A) on alignments A, where these functions gi are positively
correlated with true accuracy. The alignment accuracy estimator E is a linear
combination of these functions, E(A) =

∑
1≤i≤d ci gi(A), where the coefficents

ci specify the estimator E. When the feature functions have range [0, 1] and
the coefficients form a convex combination, the resulting estimator E will also
have range [0, 1]. Facet uses a collection of five feature functions, many of which
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Fig. 3. Relationship of estimators to true accuracy. Each point in a scatterplot corre-
sponds to an alignment whose true accuracy is on the horizontal axis, and whose value
under a given estimator is on the vertical axis. Both scatterplots show the same set of
3,000 alignments under the accuracy estimators Facet [15] and TCS [3].

make use of predicted secondary structure for the protein sequences [15]. Fig-
ure 3 shows the correlation of Facet and TCS [3] (the next best estimator in
our tests) to true accuracy. To be able to distinguish good from bad alignments
an estimator should have a steep slope and very little spread. While the TCS

estimator has high slope, it has quite a bit of spread. In contrast, the Facet

estimator has much less spread but a less steep slope, and we have found this to
be more effective in ranking alignments for parameter advising.

The features we use in Facet are a mixture of canonical measures of align-
ment quality, such as Amino Acid Identity, and novel non-local features of an
alignment that correlate with true accuracy. Many of the most accurate features
use predicted protein secondary structure. For instance, the Secondary Struc-
ture Blockiness feature finds an optimal packing of blocks of aligned amino acids
that have the same predicted structure type. The other feature functions used
in the Facet estimator are: Secondary Structure Identity, Secondary Structure
Agreement, Gap Open Density, and Core Column Percentage. A full description
of all features is in [15].

A parameter advisor uses the estimator to effectively rank alignments, so
an estimator just needs to be monotonic in true accuracy. The difference-fitting
approach learns the coefficients of an estimator that is close to monotonic by fit-
ting the estimator to differences in true accuracy for pairs of training alignments.
We can formulate the problem of coefficient finding using difference-fitting as a
linear program; the details of this approach are in [15].

2.3 Learning an advisor set

The size of the parameter set used for advising should be small, since the aligner
is run for each parameter setting. We utilize the concept of an oracle [25] (a
perfect advisor that has access to the true accuracy of an alignment) to find sets
that we use in practice. For a given advisor set P , an oracle selects parameter
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choice argmaxp∈P
{
F (Ap)

}
, where again function F gives the true accuracy of

an alignment. (Equivalently, an oracle is an advisor that uses the perfect esti-
mator F .) An oracle always picks the parameter choice that yields the highest
accuracy alignment.

While an oracle is impossible to construct in practice, it gives a theoretical
limit on the accuracy achievable by advising with a given set. Furthermore, if
we find the optimal advisor set for an oracle for a given cardinality bound k,
which we call an oracle set, then the performance of an oracle on an oracle set
gives a theoretical limit on how well advising can perform for a given bound k
on the number of parameter choices. In practice, oracle sets are used with Facet

to construct an advisor.

We have shown that while finding an optimal oracle set is NP-complete, it
can be formulated as an integer linear programming problem [15]. Learning an
optimal oracle set of cardinality k, for a universe of u parameter choices and
a training set of t benchmarks, involves solving an integer linear program with
Θ(ut) variables and Θ(ut) inequalities. Using the CPLEX integer linear program-
ming solver, this formulation permits finding optimal oracle sets in practice even
for cardinalities up to k = 25.

It is possible to use a greedy procedure to find advisor sets tuned to a concrete
estimator rather than the oracle [5]. While using these sets on global parame-
ter advising increased advising accuracy over oracle sets, this increase did not
transfer to adaptive local realignment. For the results in later sections, we will
construct an advisor using the Facet accuracy estimator learned using difference
fitting, along with oracle sets. Note this is not an oracle advisor, since it uses
the Facet estimator.

This prior work focused on using parameter advising to choose the parameter
setting for an entire alignment, which we call here global parameter advising. The
next section presents adaptive local realignment, which leverages these ideas to
in essence achieve local parameter advising.

3 Adaptive local realignment

To overcome the issue of protein sequences being non-homogeneous and hav-
ing regions that may require different alignment parameter settings we have
developed a method we call adaptive local realignment. Adaptive local realign-
ment uses some of the same basic principles that have been shown to work well
for global parameter advising. We apply the techniques described in the previ-
ous section locally to choose the best alignment parameters over an interval of
columns in an alignment.

The adaptive local realignment method can be broken down into two steps:
(1) discerning regions of the alignment that are well-aligned, which should be
retained; and (2) producing a new alignment for regions that are poorly aligned,
using parameter advising.
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Fig. 4. The adaptive local realignment process. (a) Estimate the accuracy for sliding
windows across the input alignment using Facet. (b) Calculate a score for each column
as the weighted sum of the accuracies of all windows that overlap the column. (c) Label
columns that are above τS or below τB as seeds or barriers, respectively. (d) Define
realignment regions that will be extracted from the alignment by extending seeds in
both directions until they reach a barrier. (e) Use parameter advising to find a new
alignment of each realignment region. (f) Replace the original realignment region if the
new alignment is more accurate.

3.1 Identifying local realignment regions

When selecting alignment columns that should be saved we cannot simply iden-
tify correctly recovered columns in a computed alignment since just as with
global alignments we do not have a known reference in practice. But we can
identify these regions using an accuracy estimator E which we defined earlier.
To partition the input alignment we first calculate the estimated accuracy of a
sliding window across the alignment (Figure 4a). The window size is a fraction
w ≤ 1 of the total length of the alignment. The value of w must be chosen
carefully because the accuracy estimator has features that reflect global proper-
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ties of an alignment. A larger sliding window will provide more context at each
position and should provide a better estimate of accuracy. At the same time, if
the window is too large there will not be fine enough granularity to identify the
transition points between correctly- and incorrectly-aligned columns. Addition-
ally, we define upper and lower bounds on the absolute window size to account
for very short and very long alignments.

A score is assigned to each column as the sum of the approximately 1
w window

scores that overlap that column weighted proportionally to the distance to the
center column of the window (Figure 4b). A geometric distribution, with a decay
rate d < 1, centered on the middle column is used to determine the contribution
of a window to the scores of each of the columns it covers. As d approaches 1,
a column gets equal weight from all covering windows; as it approaches 0, the
score is dependent only on the window centered at that column.

From the column scores we generate a partitioning by labeling columns for
which there is the most evidence of being correctly (or incorrectly) aligned.
Given the minimum percentage of columns we would like to retain from the
input alignment, TB , and the minimum percentage of columns we would like to
replace, TS , we calculate two threshold values τB and τS such that the number of
columns with score greater than τB is at least d` TBe, and the number of columns
with score less than τS is at least d` TBe. We can then label all columns with score
at least τB as barriers—these columns are guaranteed to be retained—and those
with column score at most τS are labeled as seeds—these columns are guaranteed
to be realigned (Figure 4c). Finally, we define realignment regions by extending
each seed in both directions until a barrier column is reached (or the first or last
column of the alignment). Note that a realignment region may contain more than
one seed column but will never include one of the barriers. Using this method
we ensure that: at least ` TB columns from the original alignment will be in the
final alignment, there will always be at least one realignment region, and there
will never be a realignment region that covers all columns of the input.

3.2 Local parameter advising on a region

The realignment regions defined above identify subalignments that have the po-
tential to be improved and we will use parameter advising to produce better
alignments of these regions and replace them in the input alignment. We extract
the subalignment from the input identified by the columns in each alignment
region (Figure 4d). Removing the gaps from this subalignment yields a set of
unaligned sequences which becomes the input to a slightly modified version of
the parameter advising method described earlier (Section 2.1, Figure 2) which
considers the location of the realignment region within the alignment scoring
scheme (Figure 4e). The Opal aligner scores terminal and internal gaps sepa-
rately but for the case of adaptive local realignment we only apply terminal gap
scores when the terminal column in the context of the subalignment is also the
terminal column in the context of the global alignment. As mentioned earlier an
alignment region will never include both terminals.
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Once we have obtained the new alignment via parameter advising the final
step is to replace the original region in the input (Figure 4f) if the Facet score
is higher than that of the original subalignment for the realignment region.

After all realignment regions have been updated by local advising we make
one last advising decision between the new alignment and the input alignment.
The more accurate global alignment of the two is returned.

3.3 Iterative local realignment

The adaptive local realignment process corrects misalignments in the input, but
after performing the procedure there may still be some regions of the alignment
that can be improved. These remaining regions may not have been identified
originally because they are subregions within a newly-included alignment, or
because the threshold was too low for a seed to be identified due to the very low
quality of other another region. In either case, it would be beneficial to repeat
adaptive local realignment to further increase accuracy. Therefore, we iterate the
whole process (Figure 4) until a user-defined maximum number of iterations is
reached, or no further improvements are made.

3.4 Combining local and global advising

The quality of the alignment input to the adaptive local realignment process
is critical since adaptive local realignment is only making local improvements.
Therefore, we would like to use global parameter advising, which has been shown
to improve accuracy [15], to identify the best initial alignment. Local and global
advising can then be combined in two ways:

(1) local advising on all global alignments, using adaptive local realign-
ment on each of the alternate alignments produced within global pa-
rameter advising, and then choosing among all 2|P | alternate align-
ments (for |P | unaltered global alignments, and |P | locally-advised
alignments); and

(2) local advising on the best global alignment, which chooses the best
global alignment, and then uses adaptive local realignment to boost
its accuracy.

We compare both ways of combining local and global advising, as well as local
advising on the default alignment, in the next section.

4 Assessing adaptive local realignment

We evaluate the performance of adaptive local realignment and its use in com-
bination with global advising through experiments on a collection of protein
multiple sequence alignment benchmarks. A full description of the benchmarks
and universe of parameters used for parameter advising can be found in [15] and
is briefly described here.



Boosting alignment accuracy by adaptive local realignment 11

The benchmark suites used in our experiments consist of reference alignments
of proteins that are largely induced by structurally aligning their known three-
dimensional structure. In particular, we use the BENCH suite of Edgar [9] (which
is a combination of the BAliBASE [1], PREFAB [10], OxBench [20], and SABRE [24]
databases), supplemented by a selection from the PALI suite of Balaji et al. [2].
The full benchmark collection we use consists of 861 reference alignments.

As is common in benchmark suites, easy-to-align benchmarks are highly over-
represented in this collection. To correct for this bias towards easy to align bench-
marks when evaluating average advising accuracy, we binned the 861 benchmarks
by hardness, which we measured by the true accuracy of Opal using the default
parameter setting. We then divided the the full range [0, 1] of accuracies into 10
bins, where bin b for b = 1, ..., 10 contains hardness interval

(
(b− 1)/10, b/10

]
,

and has 12, 12, 20, 34, 26, 50, 62, 74, 137, and 434 benchmarks respectively. We
report the average accuracy across bins rather than across benchmarks. This
means that the average accuracy of alignments using the Opal default parame-
ter settings is near 50%. Even though the binning is based on the Opal default
alignments, most other standard aligners have default accuracy near 50% as
well: Clustal Omega [22], 47.3%; MUSCLE [10], 48.4%; MAFFT [14], 51.0%. The
methodology presented here is general and can be implemented for any other
aligner.

We developed a universe of alignment parameter settings by enumerating
reasonable values of each of the tunable alignment parameters for the Opal

aligner. In particular the tunable parameters for Opal are represented as a 5-tuple
(σ, λI , λT , γI , γT ) which represent the replacement matrix (σ) and the internal
and terminal gap open (λ) and extension costs (γ). For the substitution matrix
we selected 3 matrices form the BLOSUM [13] and VTML [18] families, two choices
of terminal gap extension costs, and three choices each of internal gap extension,
terminal gap open and internal gap open costs. In total we generate a universe
of 162 parameter settings.

We use 12-fold cross validation to examine the increase in accuracy gained us-
ing adaptive local realignment. We first evenly and randomly distributed bench-
marks into twelve groups for each hardness bin; the 12 independent folds are
generated by choosing one group from each bin to be in the testing set, and the
other eleven to be in the training set. Finally, we generate an alignment for each
benchmark in the training or testing set of each fold using each of the parame-
ters in our universe and the Opal aligner. The results we reported are averages
over these twelve folds. (Note that across twelve folds, every example is tested
on exactly once.)

We trained the estimator coefficients for Facet on the training example sets
for each fold using the difference fitting method described in Section 2.2. We
found that there was very little change in coefficients between the training folds
so for simplicity we use the estimator coefficients that are release with the newest
version Facet which were trained on all available benchmarks. We also use the
TCS estimator for adaptive local realignment, these results are in Section 4.3.
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Fig. 5. Accuracy of the default alignment, and different advising methods, within diffi-
culty bins. The horizontal axis shows all ten benchmarks bins. The vertical axis shows
the accuracy averaged over just the benchmarks in that bin using default parameter
settings, local advising only, global advising only, and the combined advising method
using an oracle set of cardinality k = 10. The bar chart on the right shows the accuracy
uniformly averaged over the bins.

To choose the parameters for adaptive local realignment, we tested the cross
product of reasonable values for the tunable parameters. We used the perfor-
mance on training benchmarks described above to find the combination of these
settings that gave the highest improvement in accuracy when local advising was
applied to the default alignments from Opal. Table 1 summarizes the tunable pa-
rameters, the range of values over which we tested and the value we selected for
use in our experiments. Details on the iteration count selection are in Section 4.4.

4.1 Effect of local realignment within difficulty bins

Figure 5 shows the alignment accuracy across difficulty bins for default align-
ments from Opal, local advising on these default alignments, global advising
alone, and local combined with global alignment. Here the combination method
uses local advising on all alternate alignments within global advising. The oracle
set of cardinality k = 10 was used for both global and local advising.

Table 1. Adaptive Local Realignment Parameter Selection

Parameter Range of Values Chosen

window length fraction, w 0.05, 0.1, 0.2, 0.3, . . . , 0.7 0.3
window length lower bound 5, 10, 20, 30 10
window length upper bound 30, 50, 75, 100, 125 30

barrier label percentages, TB 5%, 10%, 20%, 30%, . . . , 70% 10%
seed label percentages, TB 5%, 10%, 20%, 30%, . . . , 70% 30%
geometric decay rate, d 0.5, 0.66, 0.9, 0.99 0.9
iterations 1, . . . , 5, 10, 15, 25 5
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Fig. 6. Advising accuracy versus advisor set cardinality. The horizontal axis is the
cardinality of the advisor set used by the advising methods. The vertical axis shows
the advising accuracy of the default parameter setting, local advising, global advising,
and the combined advising method, averaged across difficulty bins.

The improvement gained by using adaptive local realignment over the default
parameter setting is most evident in the two most difficult benchmark bins using
local advising increases the average accuracy by 11.5% and 9.1% respectively,
but the accuracy increases on all bins. Overall using local advising increases the
accuracy of the default alignments by and average of 4.5% across bins.

Combining local and global advising substantially improves the accuracy over
either of the methods individually. This is most pronounced for the hardest to
align benchmarks. For the bottom two bins using both parameter advising and
adaptive local realignment increases the accuracy by 23.0% and 25.6% accuracy
over using just the default parameter choices. Additionally, using adaptive local
realignment increases the accuracy by 5.9% and 6.4% accuracy on the bottom
most bins over using parameter advising alone. On average thats an 8.9% increase
in accuracy over all bins by using the combined procedure over using just the
default parameter choice and a 3.1% increase over using only parameter advising.

4.2 Varying advisor set cardinality

Since an alignment is produced for each region of local realignment for each
parameter choice in the advisor set, and the running time is dependent on the
size of the advisor set, it may be desirable to use a smaller set than used in
the previous section to reduce the running time of local (and global) advising.
We produced oracle advisor sets for cardinalities k = 2, . . . , 15 and used them
to test the effect of local advising both alone and in combination with global
advising. Figure 6 shows the average advising accuracies of using advisor sets
of increasing cardinalities for adaptive local realignment applied to the Opal
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Fig. 7. Accuracy of the default alignment and local realignment using TCS and Facet

with various advisor set cardinalities. This figure compares the accuracy of alignments
produced by the Opal default parameter settings applying local realignment using either
the TCS or Facet estimator. The horizontal axis is the cardinality of the oracle advising
set used for local realignment. The vertical axis shows the accuracy of the alignments
produced by each of the advising methods, averaged across difficulty bins.

default alignment, global advising alone, and global combined with local advis-
ing. The figure shows the accuracy of both combined local and global advising
strategies described in Section 3.4: adaptive local realignment applied to best
global alignment found though advising and adaptive local realignment applied
to all global alignments. The cardinality of the set used for both global and local
advising is shown on the horizontal axis, while the vertical axis shows alignment
accuracy uniformly averaged across bins.

The accuracy of alignments produced by all four methods shown eventually
reaches a plateau where adding additional parameters to the advisor set no
longer increases the alignment accuracy. This plateau is reached at cardinality
k = 10 when local realignment is applied to the default alignments and at k = 6
for parameter advising with and without local realignment, but this plateau is
higher for the combined methods. Across all cardinalities using local combined
with global advising improves alignment accuracy by nearly 4% on average.
Note that when local realignment is applied to all global alignments the advisor
is now choosing from a set of alignments which have higher accuracy than their
corresponding original alignments.

The results above uniformly average advising accuracy across bins. In con-
trast, if we report advising accuracy uniformly averaged across benchmarks, Opal
on its default parameter choice achieves accuracy 80.4%, local or global advising
alone increases this accuracy to 82.1% and 81.8% respectively, and combining
both methods increases the accuracy to 83.1% (all at cardinality k=10). Other
aligners have accuracies: Clustal Omega, 77.3%; MUSCLE, 78.1%; MAFFT, 79.4%.
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4.3 Comparing estimators for local advising

Figure 7 shows the average accuracy of local advising on default alignments using
both Facet and TCS (the next-best estimator for advising [15, 5]). These results
used only a single iteration of adaptive local realignment for both estimators,
due to the large increase in running time caused by calls to the external TCS
program. Using TCS for local advising does increase accuracy over the default
alignment, but the increase is less than half that of Facet.

4.4 Effect of iterating local realignment

As discussed in Section 3.3, iterating local advising should eventually reach a
state where the alignment is no longer improving, or even worse, begins deterio-
rating due to noise in the accuracy estimator. Table 2 shows the average accuracy
of using local adaptive realignment on the default alignment as the number of
iterations is increased. The training accuracy reaches a plateau at 5 iterations;
we use this number of iterations in Sections 4.1 and 4.2.

4.5 Summarizing the effect of adaptive local realignment

Table 3 summarizes how adaptive local realignment behaves across difficulty bins
during the first iteration of improving Opal default alignments. The columns are
average values for each of the 10 benchmark bins, and average values across all
benchmarks. The first three rows show how many of the 861 benchmarks are in
each bin, as well as the number and percentage of those had at least one realign-
ment region in the alignment that was replaced. The last three rows summarize
how much of each alignment changed. The fourth row shows the average num-
ber of realignment regions found for each benchmark; on average about 2 regions

Table 2. Accuracy of Adaptive Local Realignment Across Iterations

Iterations 1 2 3 4 5 10 15 25

Testing 53.5% 53.7% 54.1% 54.4% 54.5% 54.5% 54.5% 54.5%
Training 53.5% 53.9% 54.5% 54.6% 54.8% 54.8% 54.9% 54.9%

Table 3. Summary of Adaptive Local Realignment on Default Alignments

Bin 1 2 3 4 5 6 7 8 9 10 Overall

Number of benchmarks 12 12 20 34 26 50 61 74 137 434 861
Number modified 8 7 16 27 19 34 46 61 115 352 685
Percentage modified 67% 58% 80% 79% 73% 68% 74% 82% 84% 81% 80%

Regions per benchmark 1.92 2.17 2.50 1.88 2.23 2.14 2.31 2.16 2.48 2.19 2.23
Columns realigned 75% 73% 76% 70% 75% 77% 74% 73% 75% 72% 73%
Columns replaced 64% 60% 68% 60% 66% 72% 65% 63% 64% 47% 57%
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were realigned for each default alignment. The last two rows summarize the per-
centage of the original columns that were in realignment regions, and how many
of the columns from the original alignment were replaced. Notice that while the
percentage of columns covered by realignment regions stays roughly the same
in the easiest-to-align benchmark bin, only 47% of the alignment columns were
altered, while in the rest of the bins over 60% of the alignment columns improved.

4.6 Running time

The running time of Opal with adaptive local realignment, averaged across all
benchmarks, increases to 110 seconds when using an advisor set of cardinality
k=10, and 5 iterations. This is up from 36 seconds for one iteration, and about
8 seconds for the default parameter settings. This high increase in wall-clock
time is mainly due to the fact that, as currently implemented, adaptive local
realignment does not exploit parallelism in advising. In contrast, global advising
has been parallelized, so the average running time of global advising on the
same advisor set of size k=10 is only around 33 seconds. Note that the number
of columns being repeatedly aligned by global advising is about a factor 1.25
more than for local advising. When the two methods are combined, the average
running time increases to 68 and 178 seconds for local advising on the best global
alignment, and local advising on all global alignments, respectively.

5 Conclusion

We have presented adaptive local realignment, the first approach that demonstra-
bly boosts protein multiple sequence alignment accuracy by adaptively realigning
regions with local parameter settings. Applying this to alignments initially com-
puted using an optimal default parameter setting significantly improves align-
ment accuracy; when combined with global parameter advising to select an initial
parameter setting, this new approach to local advising boosts accuracy greatly.

Acknowledgements Research of JK and DD at Arizona was funded by NSF
Grant IIS-1217886 to JK. DD was partially supported at Carnegie Mellon by
NSF Grant CCF-1256087, NSF Grant CCF-131999, NIH Grant R01HG007104,
and Gordon and Betty Moore Foundation Grant GBMF4554, to Carl Kingsford.

References

1. Bahr, A., Thompson, J.D., Thierry, J.C., Poch, O.: BAliBASE (Benchmark Align-
ment dataBASE): enhancements for repeats, transmembrane sequences and circu-
lar permutations. Nucleic Acids Research 29(1), 323–326 (2001)

2. Balaji, S., Sujatha, S., Kumar, S., Srinivasan, N.: PALI—a database of Phylogeny
and ALIgnment of homologous protein structures. NAR 29(1), 61–65 (2001)

3. Chang, J., Tommaso, P., Notredame, C.: TCS: A new multiple sequence alignment
reliability measure to estimate alignment accuracy and improve phylogenetic tree
reconstruction. Molecular Biology and Evolution 31(6), 1625–1637 (2014)



Boosting alignment accuracy by adaptive local realignment 17

4. DeBlasio, D., Kececioglu, J.: Facet: software for accuracy estimation of protein
multiple sequence alignments. facet.cs.arizona.edu (2014)

5. DeBlasio, D., Kececioglu, J.: Learning parameter-advising sets for multiple se-
quence alignment. IEEE/ACM Trans. on Comp. Biology and Bioinformatics (2015)

6. DeBlasio, D.F., Wheeler, T.J., Kececioglu, J.D.: Estimating the accuracy of mul-
tiple alignments and its use in parameter advising. Proceedings of the 16th Conf.
on Research in Computational Molecular Biology (RECOMB) pp. 45–59 (2012)

7. DeBlasio, D.F.: Parameter Advising for Multiple Sequence Alignment. PhD disser-
tation, Department of Computer Science, The University of Arizona (May 2016)

8. Do, C., Mahabhashyam, M., Brudno, M., Batzoglou, S.: ProbCons: probabilistic
consistency-based multiple sequence alignment. Gen. Res. 15(2), 330–340 (2005)

9. Edgar, R.C.: BENCH. drive5.com/bench (2009)
10. Edgar, R.: MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Research 32(5), 1792–1797 (2004)
11. Fitch, W.M., Margoliash, E.: A method for estimating the number of invariant

amino acid coding positions in a gene using cytochrome c as a model case. Bio-
chemical Genetics 1(1), 65–71 (1967)

12. Gotoh, O.: Optimal alignment between groups of sequences and its application to
multiple sequence alignment. Comp. Appl. in the Biosciences 9(3), 361–370 (1993)

13. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks.
Proc. of the National Academy of Sciences of the USA 89(22), 10915–10919 (1992)

14. Katoh, K., Kuma, K.i., Toh, H., Miyata, T.: MAFFT version 5: improvement in
accuracy of multiple sequence alignment. Nucl. Acids Res. 33(2), 511–518 (2005)

15. Kececioglu, J., DeBlasio, D.: Accuracy estimation and parameter advising for pro-
tein multiple sequence alignment. J. of Comp. Biology 20(4), 259–279 (2013)

16. Kececioglu, J., Starrett, D.: Aligning alignments exactly. In: Proceedings of the 8th
Conf. on Research in Comp. Molec. Biology (RECOMB). pp. 85–96. ACM (2004)
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